

MobiDataLab is funded by the EU
under the H2020 Research and
Innovation Programme (grant
agreement No 101006879).

 D4.7 Data enrichment

processors (V1)

23/01/2023
Author(s): Mohamed KARAMI (AKKA) - Francesco LETTICH (CNR)

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 2

Funded by the
European Union

 Summary sheet

Deliverable Number
D4.7

Deliverable Name
Data enrichment processors (V1)

Full Project Title MobiDataLab, Labs for prototyping future Mobility Data sharing cloud
solutions

Responsible Author(s)
Mohamed KARAMI (AKKA) - Francesco LETTICH (CNR)

Contributing Partner(s)

Peer Review Alberto BLANCO JUSTICIA (URV) - Thierry-Xavier CHEVALLIER
(AKKA)

Contractual Delivery Date
31-07-2022

Actual Delivery Date
28-07-2022

Status
Final

Dissemination level
Public

Version
V1.0

No. of Pages
40

WP/Task related to the
deliverable WP4/T4.2

WP/Task responsible
AKKA/AKKA

Document ID
MobiDataLab-D4.7-DataEnrichmentProcessors_V1_v1.0

Abstract This deliverable is a report to provide an overview of the Task 4.4
demonstrator

 Legal Disclaimer

MOBIDATALAB (Grant Agreement No 101006879) is a Research and Innovation Actions project funded by the EU

Framework Programme for Research and Innovation Horizon 2020. This document contains information on

MOBIDATALAB’s core activities, findings, and outcomes. The content of this publication is the sole responsibility of the

MOBIDATALAB consortium and cannot be considered to reflect the views of the European Commission.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 3

Funded by the
European Union

 Project partners

Organization Country Abbreviation

AKKA I&S France AKKA

CONSORZIO INTERUNIVERSITARIO PER L'OTTIMIZZAZIONE E
LA RICERCA OPERATIVA

Italy ICOOR

AETHON SYMVOULI MICHANIKI MONOPROSOPI IKE Greece AETHON

CONSIGLIO NAZIONALE DELLE RICERCHE Italy CNR

HOVE France HOVE

HERE GLOBAL B.V. Netherlands HERE

KATHOLIEKE UNIVERSITEIT LEUVEN Belgium KUL

UNIVERSITAT ROVIRA I VIRGILI Spain URV

POLIS - PROMOTION OF OPERATIONAL LINKS WITH
INTEGRATED SERVICES

Belgium POLIS

F6S NETWORK IRELAND LIMITED Ireland F6S

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 4

Funded by the
European Union

 Document history

Version Date Organization Main area of changes Comments

0.1 02/06/2022 AKKA outline Draft

0.2 07/07/2022 AKKA Geographical enrichment Draft

0.3 15/07/2022 CNR Semantic enrichment Draft

0.4 26/07/2022 AKKA All Peer review

0.5 26-28/07/2022 AKKA All Quality check

1.0 28/07/2022 AKKA All Final version

 Executive Summary

The deliverable D4.7 is a report providing an overview of version 1 of the MobiDataLab data

enrichment processors: Geographical and semantic enrichment demonstrators

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 5

Funded by the
European Union

 Table of contents

2.2.1. Pre-processing module ... 12

2.2.2. Trajectory segmentation module .. 13

2.2.3. Segment enrichment module .. 13

2.2.4. Example of content within an RDF graph ... 15

2.2.5. Specifications of the Pandas dataframe containing the raw trajectories 18

2.2.6. Specifications of the Pandas dataframe containing the output of the pre-processing
module .. 18

2.2.7. Specifications of the Pandas dataframes containing the output of the segmentation
module .. 19

2.2.8. Specifications of the file containing the points of interest. .. 20

2.2.9. Specifications of the file containing weather information .. 20

2.2.10. Specifications of the Pandas dataframe containing social media posts 20

2.2.11. Details on the ontology used to structure the information within the RDF graph 21

3.1.1. Manual build and dependencies installation ... 24

3.1.2. Build and run as a docker image through Gitlab-CI.. 26

3.1.3. Build and run as a docker image through Travis-CI ... 27

3.1.4. Pull and run MDL-Geo-Enrichment docker image .. 28

3.2.1. Here API enrichment: ... 31

3.2.2. Navitia API enrichment: .. 32

3.2.3. OSM API enrichment: ... 33

3.2.4. GTFS API enrichment: .. 33

3.2.5. GeoJson API enrichment: ... 33

3.2.6. Generic Json API enrichment: .. 35

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 6

Funded by the
European Union

 List of figures

Figure 1: Execution of the script mat_builder.py .. 11
Figure 2: Demonstrator backend. .. 11
Figure 3: pre-processing module. .. 12
Figure 4: Trajectory segmentation module. ... 13
Figure 5: Segment enrichment module. .. 14
Figure 6: initial view of the subgraph associated with the user ID 402 ... 16
Figure 7: Social Media Post aspect. .. 16
Figure 8: The subgraph rooted in the node related to the trajectory 224641 of the user 402. 17
Figure 9: Overview of the Move class with its subclasses ... 22
Figure 10: Overview of the Weather and Social Media Post classes. .. 22
Figure 11: an overview of the Stop class with its subclasses. ... 23
Figure 12: The Mobility data enrichment architecture .. 24
Figure 13: MDL-Geo-Enrichment pipeline on Gitlab-CI ... 26
Figure 14: Travis-CI’s environment variables .. 27
Figure 15: MDL-Geo-Enrichment pipeline on Travis CI ... 27
Figure 16: Swagger UI – MDL-Geo-Enrichment API list .. 29
Figure 17: Sequence diagram of the enrichment process ... 30
Figure 18: Sequence diagram of the enrichment process ... 30
Figure 19: Here stations API enrichment ... 31
Figure 20: GeoJSON Api enrichment .. 34
Figure 21: Generic JSON Api enrichment ... 36

 List of tables

Table 1: Here API parameters... 32
Table 2: GeoJson API parameters .. 34
Table 3: Generic Json API parameters ... 37

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 7

Funded by the
European Union

 Abbreviation and acronyms

Abbreviation Meaning

API Application programming interface

CI Continuous integration

CD Continuous delivery / deployment

GeoJSON Geographical JSON representation

GTFS General transit feed specification

JSON JavaScript object notation

OSM Open Street Map format

GIS Geographic information system

MDL-Geo-Enrichment MobiDataLab geographical enrichment

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 8

Funded by the
European Union

 Introduction

1.1. Project overview

There has been an explosion of mobility services and data sharing in recent years. Building on this,

the EU-funded MobiDataLab project works to foster the sharing of data amongst transport

authorities, operators, and other mobility stakeholders in Europe. MobiDataLab develops knowledge

as well as a cloud solution aimed at easing the sharing of data. Specifically, the project is based on

a continuous co-development of knowledge and technical solutions. It collects and analyses the

advice and recommendations of experts and supporting cities, regions, clusters, and associations.

These actions are assisted by the incremental construction of a cross-thematic knowledge base and

a cloud-based service platform, which will improve access and usage of data-sharing resources.

1.2. Purpose of the deliverable

The Reference Data enrichment processor v1 is a prototype that contains a set of open tools allowing

data semantic and geographical enrichment.

1.3. Intended Audience & Review process

The dissemination level of the D4.7 deliverable is ‘public’ (PU).

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 9

Funded by the
European Union

 Semantic enrichment of mobility data
(demonstrator)

According to the Grant agreement specifications, the objective of Task 4.4 is to “[…] contribute to

the development of open tools allowing the enrichment of data […] by combining the data with other

datasets and gathering additional results.

Different data enrichment techniques will be provided as open tools. More specifically, this section

focuses on: “Enrich data semantically (combining with the Linked Open Data cloud, RDF/SPARQL)”.

Accordingly, for the semantic enrichment of trajectories, we use the notion of multiple aspect

trajectory (MAT) (dos Santos Mello 2019). A multiple aspect trajectory expresses movement data

that is heavily semantically enriched with dimensions (i.e., aspects) representing various types of

semantic information (e.g., stops, moves, weather, traffic, events, and points of interest). Aspects

may be derived from different data sources and can be large in number, heterogeneous, or

structurally complex.

One important point of novelty is that enrichment aspects might be associated with individual

trajectory points, segments (i.e., sub-trajectories which are part of a larger trajectory), a whole

trajectory, or the moving objects that are generating the trajectories (e.g., an individual).

For instance, weather conditions might get associated with trajectory segments, thus indicating the

weather conditions that the objects associated with those segments encountered. Some Points of

Interest might get associated with a trajectory stop segment, thus indicating the point of interest that

the object associated with such segment visited during their stay. A move segment, i.e., part of a

trajectory during which its object moved, might be enriched with the transportation means used to

move. Personal data can be associated with the moving object (e.g., gender, social media profile,

etc.).

The semantic enrichment demonstrator is therefore focused on building such semantically enriched

trajectories in the context of the MobiDataLab project. The demonstrator has been derived from

MAT-Builder (Pugliese et al. 2022) a tool developed by CNR to semantically enrich trajectories.

MAT-builder serves the purpose of showing how a semantic enrichment processor (1) can be

implemented purely on top of open-source libraries and tools, (2) is effectively able to semantically

enrich raw trajectories via the use of a variety of external data sources, and (3) can generate

knowledge graphs that can be subsequently imported in some RDF triple store of preference (e.g.,

GraphDB) for later analysis and querying, also in combination with Linked Open Data.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 10

Funded by the
European Union

2.1. How to build the semantic enrichment demonstrator

The semantic enrichment demonstrator consists of a set of Python scripts that make exclusively use

of open-source libraries. In the following, we illustrate the installation procedure needed to execute

the semantic enrichment demonstrator. The installation procedure has been tested on Windows 10,

Ubuntu (version > 20.x), and macOS.

1. The first step requires installing a Python distribution that includes a package manager. To this

end, we recommend installing Anaconda12, a cross-platform Python package manager and

environment-management system which satisfies the above criteria.

2. Once Anaconda has been installed, the next step requires setting up a virtual environment
containing the open-source libraries that our demonstrator requires during its execution. To this
end we provide a YAML file, mat_builder.yml, that can be used to set the environment up.

The user must first open an Anaconda PowerShell prompt. Then, the user must type in the prompt:
conda env create -f path\mat_builder.yml -n name_environment

where path represents the path in which mat_builder.yml is located, while name_environment

represents the name the user wants to assign to the virtual environment.

We report that the open-source libraries relevant to the demonstrator will also be relevant to the
semantic enrichment processor. These libraries are Pandas3, Geopandas4, scikit-learn5, scikit-
mobility6, rdflib7, PTRAIL8, and Dash9.

3. Once the environment has been created, the user must activate it in the prompt by typing conda
activate name_environment.

The user is now able to execute and use the demonstrator.

1 Anaconda installers are available at https://www.anaconda.com/products/distribution
2 The user can alternatively install Miniconda, i.e., a minimal version of Anaconda. Miniconda is available at
https://docs.conda.io/en/latest/miniconda.html
3 https://pandas.pydata.org/
4 https://geopandas.org/en/stable/
5 https://scikit-learn.org/stable/
6 https://github.com/scikit-mobility/scikit-mobility
7 https://rdflib.readthedocs.io/en/stable/
8 https://github.com/YakshHaranwala/PTRAIL
9 https://plotly.com/dash/

https://www.anaconda.com/products/distribution
https://docs.conda.io/en/latest/miniconda.html
https://pandas.pydata.org/
https://geopandas.org/en/stable/
https://scikit-learn.org/stable/
https://github.com/scikit-mobility/scikit-mobility
https://rdflib.readthedocs.io/en/stable/
https://github.com/YakshHaranwala/PTRAIL
https://plotly.com/dash/

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 11

Funded by the
European Union

2.2. How to use the semantic enrichment demonstrator

To run the semantic enrichment demonstrator the user must first execute from the Anaconda

PowerShell prompt, and within the virtual environment created during the installation procedure, the

Python script mat_builder.py. Once executed, the script will tell the user the address at which the

demonstrator can be accessed through some web browser of preference (Figure 1).

Figure 1: Execution of the script mat_builder.py

The user must then open a web browser and input the above address: once this is done, the user

interface of the demonstrator will appear.

The backend of the demonstrator is organized in three distinct modules, i.e., pre-processing,

segmentation, and enrichment (Figure 2). These modules must be executed exactly in this order to

compute the final dataset of multiple aspect trajectories. In the following, we illustrate what each of

these modules does, and how the user interface guides the user during the enrichment process.

Figure 2: Demonstrator backend.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 12

Funded by the
European Union

2.2.1. Pre-processing module

The first tab allows the user to access the functionalities offered by the pre-processing module

(Figure 3). The goal of this module is to take into input a dataset of raw trajectories and produce a

dataset of pre-processed trajectories that can be subsequently enriched.

The operations conducted by the pre-processing module are the following: (1) filtering out noisy or

unusable data, (2) discarding trajectories that have an insufficient sampling rate, (3) filtering out

outliers in the trajectories by analyzing their Spatio-temporal characteristics, and finally (4)

compressing the trajectories.

 Figure 3: pre-processing module.

From Figure 3, left side, we see how the pre-processing tab allows the user to input the raw trajectory

dataset they want to enrich. In Section 2.2.5 we provide the specifications that the file must follow to

be recognized and used by the demonstrator.

The tab lets the user customize some of the pre-processing operations, i.e., the user can specify the

minimum number of points a trajectory should have and a km/h threshold between two consecutive

points that the pre-processing module uses to filter out outliers. Once the raw trajectories have been

pre-processed, the user interface presents some statistics gathered during this step (right side of

Figure 3).

The demonstrator also outputs a file containing the pre-processed trajectories named

traj_cleaned.parquet. Such a file follows the format specified in Section 2.2.6.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 13

Funded by the
European Union

2.2.2. Trajectory segmentation module

Once the raw trajectories are pre-processed, the user interface activates the segmentation module

tab (Figure 4). The goal of the segmentation module (green block) is to take an input consisting of a

set of pre-processed trajectories and partition them into sub-trajectories (i.e., segments). The

segmentation module uses a well-known and widely used segmentation criterion, i.e., that of the

stop and move (Spaccapietra et al. 2008) made available by the scikit-mobility library, one of the

fundamental open-source libraries that our demonstrator uses.

The final output of the segmentation module consists of a set of segmented trajectories, which can

then be processed by the enrichment module. Such output is saved in two distinct files named

stops.parquet and moves.parquet. These files follow the specification provided in Section 2.2.7.

Figure 4: Trajectory segmentation module.

Going back to the user interface, the segmentation tab lets the user specify the minimum duration

and the spatial radius the demonstrator will use to identify the stop segments (and, indirectly, the

move ones).

Once the trajectories have been segmented, the user interface will activate a drop-down menu (right

side of Figure 4) which can be used to summarily examine information concerning the stops found

for each user.

2.2.3. Segment enrichment module

Once the trajectories are segmented, the user interface activates the segment enrichment module

tab (Figure 5). The segment enrichment module (yellow block in Figure 2) takes the output of the

segmentation module and identifies the different segments to enrich, the aspects to consider, the

datasets to be used to enrich the segments with different aspects, and the enrichment criteria.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 14

Funded by the
European Union

Figure 5: Segment enrichment module.

The first aspect the segment enrichment module adds is the transportation means associated with

each move. To this end, the segment enrichment module leverages a random-forest classifier that

has been pre-built with the scikit-learn library and trained on the GeoLife dataset (Zheng et al 2010).

The classifier recognizes the following transportation means: walk, car, bike, bus, subway, and train.

We report that the code of the demonstrator is general enough to include different transportation
means inference methods, and it will be the object of future works to include more methods and
transportation means.

The segment enrichment module then goes on to enrich each stop segment with an aspect that
concerns its regularity, i.e., whether a stop belongs to a systematic10 stop or an occasional one.

Once the enrichment module enriched the stop segments with the regularity aspect, the module

associates each systematic stop to an activity, which is established according to a pre-determined

set of criteria. In the current version of the demonstrator, such activities are home, work, or other.

Again, the demonstrator is general enough to be extended to different activities and this is indeed

the object for future work.

10 A systematic stop represents a set of stops that fall within the same area more than a given number of
times. A few examples of systematic stops can be a person’s home, work, gym, and so on.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 15

Funded by the
European Union

The demonstrator can also associate POIs with occasional stops. This is reflected in the user
interface since the user can retrieve a dataset of POIs either from OpenStreetMap11 – in this case,
the user must specify (1) the name of the city where the trajectories are located and (2) the POI
types the user wants to use to enrich the trajectories – or from a file containing the POI dataset to
be used. In Section 2.2.8 we provide the specifications that such file must follow to be recognized
and used by the demonstrator.

 We observe that, in some cases, the POI datasets downloaded from OpenStreetMap might have
an extremely large number of attributes, and many of these may be missing or null values. To deal
with this issue, the interface lets the user specify a value – that we name semantic granularity - that
the demonstrator uses to discard attributes with too many missing values. Note that such value
represents a percentage: for instance, a value equal to 80 means we discard those attributes with
several missing values equal to or greater than 80%. Once the POI dataset is loaded, the segment
enrichment module decides which POIs should be used to enrich the occasional stops by ranking
them according to the distance and temporal overlap criteria.

The demonstrator can also enrich trajectories with weather information and social media posts. In
this case, the user must provide the paths to the files containing the respective datasets. In Sections
2.2.9 and 2.2.10 we provide the specifications that said files must follow to be recognized and used
by the demonstrator.

Finally, the demonstrator allows the user to save the output of the whole enrichment process in an

RDF graph. The content within the graph follows the schema defined by CNR’s customized version

of the STEP ontology (Nogueira et al. 2018) and it is saved to disk following the Turtle format. Note

that, by using this format, the graph can be easily imported into popular triple stores (e.g., GraphDB)

for further analysis and query processing. In Section 2.2.11 we provide details on the customizations

we did to the original STEP ontology for this demonstrator.

2.2.4. Example of content within an RDF graph

Let us conclude by providing a visual example of what can be found in an RDF graph generated by

the demonstrator. To this end, we use GraphDB, a very well-known and established triple store. We

first import into the store an RDF graph that has been generated from trajectories and data covering

Rome and then use GraphDB’s visual inspection functionality to navigate the graph.

11 OpenStreetMap: https://www.openstreetmap.org/

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 16

Funded by the
European Union

Figure 6: initial view of the subgraph associated with the user ID 402

In Figure 5 we see a (collapsed) subgraph within the RDF graph related to the user having ID 402.

From the Figure, we see that the user has associated a social media aspect (the cyan

“feature_social” node) and a trajectory with ID 24641 (the yellow node). Let us expand the social

media aspect node first.

Figure 7: Social Media Post aspect.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 17

Funded by the
European Union

From Figure 6 we see that the user is associated with two distinct episodes of the social media post
aspect – in other words, the demonstrator found from the information that has been provided that
the user has published two different tweets. If we then look at the content of one of their tweets (this
is done by clicking on one of the “desc” nodes) we can see the text they have posted in one of their
tweets. Note that every episode node is also in a relationship with a node of type “TemporalExtent”
(the violet nodes in the Figure), each representing the time instant at which the post has been
published.

Let us now focus on the trajectories that user 402 possesses. From Figure 5 we see that the user is
associated with a single trajectory with ID 24641. Let us then focus on such a trajectory by expanding
the subgraph rooted in that node.

From Figure 6 we see that the trajectory node is in relationship with several nodes. First, observe
that the trajectory is always in relationship with a RawTrajectory node, which in turn is in relationship
with a set of nodes (i.e., the fixes) representing the samples (i.e., pairs (position, time)) making up
the trajectory.

The trajectory has also been associated by the demonstrator with two different semantic aspects,
i.e., the moves and the occasional stops. For what concerns the move aspect, we observe that the
demonstrator has detected 10 different move episodes, each having a specific spatiotemporal extent
and a semantic descriptor providing information on the transportation means that have been used
during the move. For what concerns the occasional stops we observe that the demonstrator has
detected 9 different episodes, with each episode having again a specific spatiotemporal extent and
a semantic descriptor providing information on potential points of interest that the user may have
visited during the stop.

Figure 8: The subgraph rooted in the node related to the trajectory 224641 of the user 402.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 18

Funded by the
European Union

2.2.5. Specifications of the Pandas dataframe containing the
raw trajectories

The user is requested to input a file containing the raw trajectory dataset to the demonstrator. The

file must contain a Pandas dataframe saved in the Parquet12 format. Each record of the dataframe

represents a sample of some trajectory and must have the following fields:

• traj_id, a string that represents the identifier of the trajectory the sample is associated with.

• user, an integer representing the identifier of the entity (e.g., user, vehicle) with which the

sample is associated with. Note that a user may have multiple trajectories.
• lat, a floating-point value representing the latitude associated with the sample.

• lon, a floating-point value representing the longitude associated with the sample.

• time, a datetime64 value representing the timestamp associated with the sample.

2.2.6. Specifications of the Pandas dataframe containing the
output of the pre-processing module

The output of the pre-processing module consists of a file named traj_cleaned.parquet

containing the dataset of the pre-processed trajectories. The file contains a Pandas dataframe saved
in the Parquet13 format. Each record of the dataframe represents a sample of some trajectory and
has the following fields:

• tid, a string that represents the identifier of the trajectory the sample is associated with.

• uid, an integer representing the identifier of the entity (e.g., user, vehicle) with which the

sample is associated with. Note that a user may have multiple trajectories.
• lat, a floating-point value representing the latitude associated with the sample.

• lng, a floating-point value representing the longitude associated with the sample.

• datetime, a datetime64 value representing the timestamp associated with the sample.

12 For more information on how to save a Pandas dataframe in the Parquet binary format, please refer to
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_parquet.html
13 For more information on how to save a Pandas dataframe in the Parquet binary format, please refer to
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_parquet.html

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_parquet.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_parquet.html

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 19

Funded by the
European Union

2.2.7. Specifications of the Pandas dataframes containing the
output of the segmentation module

The output of the segmentation module consists of two files: stops.parquet and moves.parquet,

which respectively contain the stops and the moves detected for a given set of pre-processed

trajectories.

Both files contain a Pandas dataframe saved in the Parquet14 format.

Each record in stops.parquet represents a stop that has been detected for some trajectory of some

user, and has the following fields:

• tid, a string that represents the identifier of the trajectory the stop is associated with.

• uid, an integer representing the identifier of the entity (e.g., user, vehicle) the stop is

associated with.
• lat, a floating-point value representing the latitude associated with the stop centroid.

• lng, a floating-point value representing the longitude associated with the stop centroid.

• datetime, a datetime64 value representing the timestamp associated with the instant the

stop begins.
• leaving_datetime, a datetime64 value representing the timestamp associated with the

instant the stop ends.

Each record in moves.parquet represents a move that has been detected for some trajectory of

some user, and has the following fields:

• tid, a string that represents the identifier of the trajectory the move is associated with.

• uid, an integer representing the identifier of the entity (e.g., user, vehicle) the move is

associated with.
• lat, a floating-point value representing the latitude associated with the location where the

move begins.
• lng, a floating-point value representing the longitude associated with the location where the

move begins.
• datetime, a datetime64 value representing the timestamp associated with the instant the

move begins.
• move_id, a float value representing the identifier associated with the move.

14 For more information on how to save a Pandas dataframe in the Parquet binary format, please refer to
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_parquet.html

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_parquet.html

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 20

Funded by the
European Union

2.2.8. Specifications of the file containing the points of interest.

The user is allowed to input a file containing the POIs to be used to enrich the occasional stops to

the demonstrator.

The file must contain a Pandas dataframe saved in the Parquet format. Each record of the dataframe

must have the following fields:

• osmid: a string representing the identifier that OpenStreetMap associates to a specific POI.

• category: a string representing the OpenStreetMap category to which the POI belongs. The

current version of the demonstrator supports the following categories: amenity, aeroway,
building, historic, healthcare, landuse, office, public_transport, shop,
and tourism.

• wikidata: a string representing the identifier that has been assigned by WikiData to the POI

(note: this field can contain a missing value in case a POI is not present in WikiData).
• geometry: Python object describing the shape (e.g., point, polygon, etc.) associated with the

POI.

2.2.9. Specifications of the file containing weather information

The user may pass to the demonstrator a file containing the dataset with weather information to be

used to enrich the trajectories. The file must contain a Pandas dataframe saved in the Parquet

format. Each record of the dataframe must have the following fields:

• DATE: a string representing a date in yyyy-mm-dd format. Such date represents the day

covered by the record.
• TAVG_C: float value representing the average temperature associated with DATE.

• DESCRIPTION: a string representing the weather condition associated with DATE (e.g., sunny,

rainy).

Note that in each record there is no association between the weather information and the location it
refers to. In other words, the demonstrator assumes that the weather information provided within the
weather dataframe covers the geographical area in which the trajectories are known to be located.

2.2.10. Specifications of the Pandas dataframe containing social
media posts

The user can pass to the demonstrator a file containing the dataset with tweets (i.e., social media

posts) that can be used to enrich the trajectories. The file must contain a Pandas dataframe saved

in the Parquet format. Each record of the dataframe must have the following fields:

• tweet_id: a string representing the identifier of the tweet.

• text: a string representing the content of the tweet.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 21

Funded by the
European Union

• tweet_created: a string representing the date on which the tweet was made. The date is in

yyyy-mm-dd format.
• uid: identifier of the user that made the tweet. Must correspond to the user field in the

specifications of the Pandas dataframe containing the raw trajectories.

2.2.11. Details on the ontology used to structure the information
within the RDF graph

The specifications of the original STEP ontology can be found at http://talespaiva.github.io/step/.

In the following, we introduce the main customizations CNR did to STEP for the demonstrator.

We introduced a class, Point of Interest, representing instances of points of interest. Each instance

of this class possesses (via the hasOSMValue data property) the identifier that OpenStreetMap

associates to its POI, and (if present) the URI (via the hasWDValue data property) to the WikiData

page associated with the POI.

We introduced several subclasses of the class Qualitative Description. We recall that the authors

of the STEP ontology introduced the Qualitative Description class to enable individual episodes15 of

semantic aspects to have complex representations. Moreover, we recall that this class represents a

fundamental building block that must be extended according to one’s specific needs.

Accordingly, the subclasses of Qualitative Description we introduce are:

Move: this class (Figure 8) models instances of qualitative descriptions associated with episodes of

aspects concerning move segments of trajectories. We also extended the Move class with several

subclasses representing different transportation means, i.e., Bike, Bus, Car, Subway, Train, Taxi,

and Walk.

15 By episode of a semantic aspect here we mean a specific occurrence of such aspect in space and/or time.
For instance, an episode of an Occasional Stop occurs during some time interval in some spatial region.
Another example can be an episode of a Move, which occurs during some time interval along the path
associated with the move segment.

http://talespaiva.github.io/step/

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 22

Funded by the
European Union

Figure 9: Overview of the Move class with its subclasses

Stop: this class (Figure 9) models instances of qualitative descriptions associated with episodes of

aspects concerning stop segments of trajectories. We also extended the Stop class with two

subclasses representing the two different types of stops the demonstrator detects during the

enrichment process, i.e., Occasional Stop and Systematic Stop.

Figure 10: Overview of the Weather and Social Media Post classes.

Each instance of Occasional Stop can be associated with one or more instances of Point of Interest

via the hasPOI property.

Each instance of Systematic Stop is associated with a pair of values (via the hasStartHour and

hasEndHour datatype properties) indicating the hours at which the systematic stop begins and ends.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 23

Funded by the
European Union

We also provide two further subclasses derived from the subclass Systematic Stop, i.e., Home and

Work, which conceptually represent the two types of systematic stops the demonstrator currently

attempts to recognize.

Weather: this class (Figure 10) models instances of qualitative descriptions associated with

episodes of the weather aspect. Each instance of this class possesses two values, i.e., the average

temperature (via the hasTemperature datatype property) and the weather conditions (via the

hasWeatherCondition datatype property) observed during the episode the instance is associated

with.

Social Media Post: this class (Figure 10) models instances of qualitative descriptions associated

with episodes of the social media post aspect. Each instance of this class possesses two values, the

first one being a string representing the text of a post (via the hasText datatype property), and the

second one being a timestamp indicating the publication time of the post (via the hasPublicationTime

datatype property).

Figure 11: an overview of the Stop class with its subclasses.

We let instances of the Agent class (i.e., the users producing the trajectories) have semantic

aspects. This is achieved by modifying the domain of the hasFeature property, which is now the

union of the classes Spatiotemporal Element and Agent.

We provide the OWL files containing the customized version of the STEP ontology in the GitHub
repository associated with the demonstrator:

https://github.com/MobiDataLab/mdl-semantic-enrichment

https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FMobiDataLab%2Fmdl-semantic-enrichment&data=05%7C01%7CMohamed.KARAMI%40akka.eu%7C5b79d6b06b73415f554e08da6efd434c%7Ced0e34146e56454c8a82eb80befb738b%7C1%7C0%7C637944332220715228%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=VKfCCayb7Ms5kbSZRPGv3Eq4ZS36j0IVH5%2FGEeeCn6g%3D&reserved=0

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 24

Funded by the
European Union

 Geographical enrichment of mobility data
(demonstrator)

3.1. How to build the geographical enrichment demonstrator

MDL-Geo-Enrichment is a web application providing many enrichment APIs, it was created using

Spring Boot framework and some other Java and JavaScript libraries.

Figure 12: The Mobility data enrichment architecture

There are 3 ways to get the application built and deployed:

- Manual build

- Build and deploy through Docker

- Build and deploy through Travis

3.1.1. Manual build and dependencies installation

✓ Prerequisites:

OpenJDK 11:

You can get OpenJDK from https://adoptopenjdk.net/

Maven:

You can get Maven using the following guide https://maven.apache.org/install.html

Node.js:

https://adoptopenjdk.net/
https://maven.apache.org/install.html

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 25

Funded by the
European Union

You can get Node.js from https://nodejs.org/en/download/

OsmToGeoJson module:

After installing NodeJS, you can install OsmToGeoJson as a global module with the following
command:

$ npm install -g osmtogeojson

GtfsToGeoJson module:

You need to install also Gtfs-to-GeoJson as a global module with the following command:

$ npm install -g gtfs-to-geojson

✓ Download source code:

You can download the repository as an archive file using the download menu on:
https://github.com/MobiDataLab/mdl-geo-enrichment

Or you can use Git (if installed) to clone the repository:
$ git clone https://github.com/MobiDataLab/mdl-geo-enrichment.git

✓ Build and package application:

You can build and package the application using maven:

$ mvn package -DskipTests

Then you can run the application with the built-in web server:

Using maven:

$ mvn spring-boot:run

Or by running the standalone java archive file:

$ java -jar target/mdl-geo-enrichment-0.0.1-SNAPSHOT.jar

You can specify the profile you want by adding the parameter to the above commands:

-Dspring.profiles.active=prod

There are 3 profiles: dev, integration-test, and prod. You can customize them on the “resources/
application.yml” file.

https://nodejs.org/en/download/
https://github.com/MobiDataLab/mdl-geo-enrichment

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 26

Funded by the
European Union

3.1.2. Build and run as a docker image through Gitlab-CI

You can build a docker image bundled with all the application dependencies out of the box, this is
done through Gitlab-CI:

✓ Prerequisites:

Gitlab Runner having Docker installed and running

You can follow the instructions on Gitlab’s project: Settings / CI-CD è Runners

Gitlab-CI and docker configuration are available on the files: “.gitlab-ci.yml” and “Dockerfile”.

Before creating a docker image, you need to:

- Set docker’s registry account credentials on Gitlab CI/CD variables settings:
CI_REGISTRY_USER and CI_REGISTRY_PASSWORD

- Put your Gitlab runner name on the “tags” attribute of “.gitlab-ci.yml”

To build an image based on a tag or the main branch, you can execute “Run pipeline” on the side
menu “Pipelines” and choose the branch or tag you want to build the image upon.

Figure 13: MDL-Geo-Enrichment pipeline on Gitlab-CI

4 stages are executed:

- Build: it compiles the application

- Test: it runs integration tests, an artifact containing the binaries and test reports is saved
and can be downloaded for further analysis when the non-regression tests fail.

- Package: it builds the package of the application to be deployed

- Deploy: it creates a minimal docker image based Alpine with the required dependencies
(OpenJDK11-JRE, Nodejs, Osm2GeoJson module) and uploads it to the docker registry.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 27

Funded by the
European Union

3.1.3. Build and run as a docker image through Travis-CI

You can use Github with Travis-CI to build a docker image the same way it’s done with Gitlab-CI:

✓ Prerequisites:

Github + Travis CI account

You can log in to Travis-CI with your Github account and grant the repository access to Travis so it
can automatically trigger build jobs and fetch the source code, otherwise, you will need to use Travis-
ci Api to manage job scheduling.

Travis configuration is available on the file: “.travis.yml” and Docker configuration remains on the
same file as for Gitlab-CI: “Dockerfile”.

Before creating a docker image, you need to set the official or corporate docker hub registry account
credentials on Travis-CI settings/environments variables: CI_REGISTRY_USER and
CI_REGISTRY_PASSWORD and make it visible only for the main branch

Figure 14: Travis-CI’s environment variables

To build an image based on a tag or the main branch, you can click on “Trigger build” on the side
menu “More options” and choose the branch or tag you want to build upon.

Figure 15: MDL-Geo-Enrichment pipeline on Travis CI

https://developer.travis-ci.com/
https://developer.travis-ci.com/

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 28

Funded by the
European Union

4 stages are executed:

- Build: it compiles the application

- Test: it runs integration tests, an artifact containing the binaries and test reports is saved and can
be downloaded for further analysis when the non-regression tests fail.

- Package: it builds the package of the application to be deployed

- Deploy: it creates a minimal docker image based Alpine with the required dependencies
(OpenJDK11-JRE, Nodejs, Osm2GeoJson module) and uploads it to the docker registry.

3.1.4. Pull and run MDL-Geo-Enrichment docker image

You must have docker installed and running, if you don’t have it installed, you can follow this guide
to install docker.

Then you can get the docker image by running the following command as an admin/root user:

$ docker login DOCKER_REGISTRY -u USER_NAME --password-stdin

$ docker pull DOCKER_REGISTRY/PROJECT/mdl-geo-enrichment:TAG

$ docker run -d -p 80:80 -p 443:443 registry.gitlab.com/PROJECT/mdl-geo-enrichment:TAG

✓ USER_NAME is the username of your GitLab’s registry credentials, you will be prompted to
enter your credentials password.

✓ PROJECT is the project name where the mdl-geo-enrichment repository is hosted

✓ TAG is the tag version or by default “latest”

✓ DOCKER_REGISTRY (ex: registry.gitlab.com) is the docker registry used to upload docker
images (keep it empty if the image you are pulling is hosted on the official docker hub)

The later command exposes both HTTP and HTTPS ports on the docker container, a self-signed

certificate is included for the TLS layer, but you may still need to manually accept the certificate on

your browser since it is not signed by a known authority.

Once the server is up, you can browse Swagger UI through http://SERVER/swagger-ui/

https://docs.docker.com/get-docker/
http://server/swagger-ui/

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 29

Funded by the
European Union

Figure 16: Swagger UI – MDL-Geo-Enrichment API list

3.2. How to use the geographical enrichment demonstrator

The mobility data mashup API is a Rest API that consumes a target API and enriches it with
additional attributes extracted from a source API and produces the same format as the target API.

Here is a sequence diagram illustrating the enrichment process:

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 30

Funded by the
European Union

Figure 17: Sequence diagram of the enrichment process

The geographical enrichment demonstrator provides 6 examples of API enrichment, we use Navitia
and Here’s APIs as a target APIs to be enriched, unfortunately, those providers and many others
use their proprietary format.

So, as an example of proprietary data format, we use Navitia and Here API as target REST APIs to
be enriched, and we enrich them with any provider supporting one of the 3 following standards
formats:

- OSM: OpenStreetMap, Overpass output format
- GeoJson: Geospatial data interchange format
- GTFS: General transit feed specification format

Figure 18: Sequence diagram of the enrichment process

https://overpass-api.de/output_formats.html#json
https://datatracker.ietf.org/doc/html/rfc7946
https://gtfs.org/

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 31

Funded by the
European Union

The correlation of the nodes (stop point) is done using the open-source GIS toolkit GeoTools, based
on the coordinates and the name of the nodes.

Here is the list of the implemented APIs.

3.2.1. Here API enrichment:

We implemented 2 endpoints to demonstrate enrichment of Here stations and routes services:

- /api/v1/here/getNearStations

- /api/v1/here/getRoutes

The 3 open standard data types OSM, GeoJson, and GTFS are used to enrich the stop points with
additional information such as accessibility, weather, air quality, etc.

Here is an example of how to the API through Swagger UI:

Figure 19: Here stations API enrichment

https://www.geotools.org/

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 32

Funded by the
European Union

Following are the input parameters required by this API:

Table 1: Here API parameters

Parameter Mandatory Meaning

apiFormat true Provider data format: GTFS, OSM, GeoJSON

apiKey false Authorization key for Here API

apiUrl true API URL of the source API

coordinates true Coordinates of the location: latitude, longitude

enrichAttributes false List of the attributes name to be enriched (separated with commas)

sourceToken true Header’s authorization token for the source API that will be used for
enrichment, to be filled only if a token is required for the source API

The API can be also used with a curl request, here is an example of this request on a local installation
of the demonstrator:

curl -X GET
"https://localhost/api/v1/here/getNearStations?apiFormat=GeoJson&apiKey=0PMpb1W_5iihYGu7UrBWsR8f
I6Utopf52hFBKOwl7Xc&apiUrl=https%3A%2F%2Foverpass.kumi.systems%2Fapi%2Finterpreter%3Fdata%
3D%5Bout%3Ajson%5D%3Bnode%5Bhighway%5D(48.856892%2C%202.332623%2C48.896892%2C%20
2.372623)%3Bnode%5Brailway%5D(48.856892%2C%202.332623%2C48.896892%2C%202.372623)%3Bo
ut%2520meta%3B&coordinates=48.876892%2C2.352623&enrichAttributes=wheelchair%2C%20shelter%2C
%20tactile_paving%2C%20bench%2C%20bin%2C%20lit" -H "accept: application/json"

3.2.2. Navitia API enrichment:

We implemented 2 endpoints to enrich Navitia journeys and lines API:

- /api/v1/navitia/getJourneys

- /api/v1/navitia/getLines

You use both APIs to enrich Navitia’s journey or lines API with an OpenStreetMap API or any other
data provider API supporting one of the 3 standards data formats OSM, GeoJson, or GTFS.

Both endpoints use the same parameter list as previously listed for Here API enrichment.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 33

Funded by the
European Union

3.2.3. OSM API enrichment:

We implemented 3 endpoints to handle this mobility data format:

- /api/v1/osm/convertOsmApiToGeoJson

This API is used as a proxy to call and convert the output of an OpenStreetMap data format API to
GeoJson format

- /api/v1/osm/convertOsmDataToGeoJson

This API takes OSM data as a parameter and converts it to GeoJson format

- /api/v1/osm/enrichOsmApi

This API can be used to enrich any target OSM format API with a source mobility data API that
supports one of the 3 standards of data format OSM, GeoJson, or GTFS.

3.2.4. GTFS API enrichment:

We implemented 3 endpoints to handle this mobility data format:

- /api/v1/gtfs/convertGtfsApiToGeoJson

This API is used as a proxy to call and convert the output of a GTFS data format API to GeoJson
format

- /api/v1/gtfs/convertGtfsDataToGeoJson

This API takes GTFS data as a parameter and converts it to GeoJson format

- /api/v1/gtfs/enrichGtfsApi

This API can be used to enrich any target GTFS format API with a source mobility data API that
supports one of the 3 standards data formats OSM, GeoJson, and GTFS.

3.2.5. GeoJson API enrichment:

We implemented 3 endpoints to handle this mobility data format:

- /api/v1/geojson/enrichGeoJsonApi

This API can be used to enrich any target mobility data API that produces GeoJson format, with a
source mobility data API that supports one of the 3 standards data formats OSM, GeoJson, or
GTFS.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 34

Funded by the
European Union

Figure 20: GeoJSON Api enrichment

Following is the input parameter list required by this API:

Table 2: GeoJson API parameters

Parameter Mandatory Meaning

apiFormat true The provider data format of the source API to be used for
enrichment: GTFS, OSM, GeoJSON

enrichAttributes false List of the attributes name to be enriched (separated with commas)

sourceApiUrl true API URL of the source API

sourceToken false Header’s authorization token for the source API

targetApiUrl true API URL of the target API to be enriched

targetToken false Header’s authorization token for the target API

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 35

Funded by the
European Union

The API can be also used with a curl request, here is an example of this request on local a installation
of the demonstrator:

curl -X GET
"https://localhost/api/v1/geojson/enrichGeoJsonApi?apiFormat=GTFS&enrichAttributes=wheelchair%2C%20
shelter%2C%20tactile_paving%2C%20bench%2C%20bin%2C%20lit&sourceApiUrl=https%3A%2F%2Fover
pass.kumi.systems%2Fapi%2Finterpreter%3Fdata%3D%5Bout%3Ajson%5D%3Bnode%5Bhighway%3Dbus
_stop%5D(48.8345631%2C2.2433581%2C48.8775033%2C2.4400646)%3Bout%2520meta%3B&targetApiU
rl=https%3A%2F%2Foverpass.kumi.systems%2Fapi%2Finterpreter%3Fdata%3D%5Bout%3Ajson%5D%3B
node%5Bhighway%3Dbus_stop%5D(48.8345631%2C2.2433581%2C48.8775033%2C2.4400646)%3Bout%
2520meta%3B" -H "accept: application/json"

3.2.6. Generic Json API enrichment:

The main goal of this demonstrator is to make it easy to collect and consolidate mobility data from
different sources, unfortunately, this is not an easy task, because of the heterogeneity of the
providers’ services, the providers expose their data in different formats, some of them are open
standards such GTFS, GeoJson and OpenStreetMap, others are proprietary formats like Navitia’s
format (NTFS) and Here’s format.

With this generic API, we try to improve the interoperability of those services using the only common
part of their APIs output, JSON format.

The main goal of this API will be to enrich any Rest mobility data API with any other data format of
another Rest API, using JSONPath expression, here is the user manual of how to use JSONPath
expressions: https://goessner.net/articles/JsonPath/index.html#e2

The geographical enrichment demonstrator implements one generic API:

- /api/v1/json/enrichJsonApi

This API can be used to enrich any target mobility data API that produces JSON format, with any
other source of mobility data that produces JSON format.

Authentication to the source and target APIs supports 2 ways:

- The header tokens

- The API key through request parameters, you can put it on the API’s Url

https://goessner.net/articles/JsonPath/index.html#e2

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 36

Funded by the
European Union

Figure 21: Generic JSON Api enrichment

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 37

Funded by the
European Union

Following are the input parameter of this API:

Table 3: Generic Json API parameters

Parameter Mandatory Meaning

enrichAttributes true List of the attributes name to be enriched (separated with
commas)

sourceApiUrl true API URL of the source API

sourceAttributesParentPath true The path of the parent node of the attributes on the source
API response (using JSONPath)

sourceCoordsPath true The path of the “coordinates” attribute on the source API
response (using JSONPath)

sourceNamePath true The path of the “name” attribute on the source API
response (using JSONPath)

sourceToken false Header’s authorization token for the source API

targetApiUrl true API URL of the target API to be enriched

targetAttributesParentPath true The path of the parent node of the attributes on the source
API response (using JSONPath)

targetCoordsPath true The path of the coordinates attribute on the target API
response (using JSONPath)

targetNamePath true The path of the “name” attribute on the target API response
(using JSONPath)

targetToken false Header’s authorizations token the target API

The API can be also used with a curl request, here is an example of this request on a local installation
of the demonstrator:

curl -X GET
"https://localhost/api/v1/json/enrichJsonApi?enrichAttributes=wheelchair%2C%20shelter%2C%20tactile_p
aving%2C%20bench%2C%20bin%2C%20lit&sourceApiUrl=https%3A%2F%2Foverpass.kumi.systems%2
Fapi%2Finterpreter%3Fdata%3D%5Bout%3Ajson%5D%3Bnode%5Bhighway%3Dbus_stop%5D(48.8345
631%2C2.2433581%2C48.8775033%2C2.4400646)%3Bout%2520meta%3B&sourceAttributesParentPath
=%24..elements.tags&sourceNamePath=%24..elements.coords&targetApiUrl=https%3A%2F%2Foverpass
.kumi.systems%2Fapi%2Finterpreter%3Fdata%3D%5Bout%3Ajson%5D%3Bnode%5Bhighway%3Dbus_s
top%5D(48.8345631%2C2.2433581%2C48.8775033%2C2.4400646)%3Bout%2520meta%3B&targetAttrib
utesParentPath=%24..stop_point.equipments&targetNamePath=%24..stop_point.coordinates" -H "accept:
application/json"

https://goessner.net/articles/JsonPath/index.html#e2
https://goessner.net/articles/JsonPath/index.html#e2
https://goessner.net/articles/JsonPath/index.html#e2
https://goessner.net/articles/JsonPath/index.html#e2
https://goessner.net/articles/JsonPath/index.html#e2
https://goessner.net/articles/JsonPath/index.html#e2

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 38

Funded by the
European Union

 Conclusions

This investigation introduced the Mobility Data Geographical and Semantic Enrichment
demonstrators, which are both open-source solutions that enrich heterogeneous data providers. The
effort we spent developing these demonstrators allowed us to quantitatively evaluate how much we
can enrich trajectories. The results discussed here may also serve as a basis for further exploration
of new research ideas.

As a future line of work, we plan to improve the quality of the enriched data. For what concerns the
semantic demonstrator we also plan to improve the tool to better integrate it into the transport cloud
architecture, and since the tool has been designed to be flexible and extensible, we plan to include
more semantic enrichment datasets and enrichment methods.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 39

Funded by the
European Union

 References

Dos Santos Mello Ronaldo, Bogorny Vania, Alvares Luis Otávio, Zambom Santana Luiz Henrique,
Ferrero Carlos Andres, Frozza Angelo Augusto, Schreiner Geomar Andre, Renso Chiara MASTER:
A multiple aspect views on trajectories. Trans. GIS 23(4): 805-822 (2019)).

Nogueira, Tales P., Reinaldo B. Braga, Carina T. de Oliveira, and Hervé Martin. "FrameSTEP: A
framework for annotating semantic trajectories based on episodes." Expert Systems with
Applications 92 (2018): 533-545.

Pugliese Chiara, Lettich Francesco, Renso Chiara, Pinelli Fabio. MAT-Builder: a System to Build
Semantically Enriched Trajectories. The 23rd IEEE International Conference on Mobile Data
Management, June 2022, Cyprus

Spaccapietra, Stefano, Christine Parent, Maria Luisa Damiani, Jose Antonio de Macedo, Fabio
Porto, and Christelle Vangenot. "A conceptual view on trajectories." Data & knowledge engineering
65, no. 1 (2008): 126-146.),

Zheng, Yu, Xing Xie, and Wei-Ying Ma. "GeoLife: A collaborative social networking service among
user, location and trajectory." IEEE Data Eng. Bull. 33, no. 2 (2010): 32-39.)).

https://dblp.org/db/journals/tgis/tgis23.html#MelloBASFFSR19

MOBIDATALAB – H2020 G.A. No. 101006879

D4.7 Data enrichment processors (v1) 40

Funded by the
European Union

 MobiDataLab consortium

The consortium of MobiDataLab consists of 10 partners with multidisciplinary and complementary
competencies. This includes leading universities, networks, and industry sector specialists.

For further information please visit www.mobidatalab.eu

MobiDataLab is co-funded by the EU
under the H2020 Research and
Innovation Programme (grant
agreement No 101006879).

The content of this document reflects solely the views of its authors. The European Commission is not liable for any use

that may be made of the information contained therein. The MobiDataLab consortium members shall have no liability for

damages of any kind that may result from the use of these materials.

@MobiDataLab

#MobiDataLab

https://www.linkedin.com/company/mobidatalab

http://www.mobidatalab.eu/
https://twitter.com/MobiDataLab
https://www.linkedin.com/company/mobidatalab

