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 Executive Summary 

A trajectory microdata set is a microdata set that contains trajectory data. This kind of datasets are 
special because the location information included in them can be considered both as quasi-identifiers 
and sensitive information. Trajectory microdata is prone to privacy attacks on individual users 
because of two defining characteristics: Trajectory data are highly unique and hard to anonymize.  

The main goal of task T4.5 is to develop data processing modules that apply data protection and 
anonymization techniques that will be later uploaded the Transport Cloud.  

The first version of the demonstrator was released in July 2022. It included 3 anonymization methods 
for protecting trajectory data, selected from the catalogue of techniques compiled in T2.2 considering 
the use case requirements elicited in T2.6, and the computation of utility metrics in trajectory 
databases. It also provides a command line interface (CLI) that lets users anonymize a mobility 
dataset and compute some utility measures over both the original and the anonymized datasets in 
a straightforward way.   

This second version includes 6 anonymization methods, 1 privacy-preserving analysis method, 4 
methods to compute different utility measures and 1 method to compute a privacy metric. The CLI 
has been extended to handle the new functionality and the demonstrator is now ready to be deployed 
into a server and to process requests through an API. 

The anonymization module has been designed with a focus on modularity, where pseudonymization 
or anonymization methods can be built using different components dedicated to preprocessing, 
clustering, distance computation, aggregation, etc.  

Deliverable D4.10 describes the characteristic of the final version of the demonstrator and includes 
a detailed user manual. Demonstrator is available at https://github.com/MobiDataLab/mdl-
anonymizer.  

A video demonstration is available at  

https://raw.githubusercontent.com/MobiDataLab/mdl-
anonymizer/master/docs/videos/MDL_demo_final_v1_compressed.mp4  

  

https://github.com/MobiDataLab/mdl-anonymizer
https://github.com/MobiDataLab/mdl-anonymizer
https://raw.githubusercontent.com/MobiDataLab/mdl-anonymizer/master/docs/videos/MDL_demo_final_v1_compressed.mp4
https://raw.githubusercontent.com/MobiDataLab/mdl-anonymizer/master/docs/videos/MDL_demo_final_v1_compressed.mp4
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 Introduction 

1.1. Project overview  

There has been an explosion of mobility services and data sharing in recent years. Building on this, 
the EU-funded MobiDataLab project works to foster the sharing of data amongst transport 
authorities, operators, and other mobility stakeholders in Europe. MobiDataLab develops knowledge 
as well as a cloud solution aimed at easing the sharing of data. Specifically, the project is based on 
a continuous co-development of knowledge and technical solutions. It collects and analyses the 
advice and recommendations of experts and supporting cities, regions, clusters, and associations. 
These actions are assisted by the incremental construction of a cross-thematic knowledge base and 
a cloud-based service platform, which will improve access and usage of data sharing resources.  

1.2. Purpose of this deliverable 

This document presents the anonymization module of the MobiDataLab Transport Cloud prototype. 
The anonymization tool includes methods for the protection of mobility data, methods to analyze a 
mobility dataset in a privacy-preserving way and the computation of privacy and utility metrics. All 
the implemented methods are described in detail in Annex 6.1. A user manual is provided in Annex 
6.2. This document is a companion report to the demonstrator available at 
https://github.com/MobiDataLab/mdl-anonymizer and to the video demonstration available 
at  

https://raw.githubusercontent.com/MobiDataLab/mdl-
anonymizer/master/docs/videos/MDL_demo_final_v1_compressed.mp4  

1.3. Structure of the deliverable 

This deliverable is organized as follows. Section 2 gives a general overview of the Anonymization 
Module and introduces the components implemented in the final version of the module. Sections 3 
and 4 give an overview of Command Line Interface and the API. Section 5 presents the conclusions. 
Finally, the annexes provide a detailed description of the design of the module, the developed 
components, and the Command Line Interface tool.  

  

https://github.com/MobiDataLab/mdl-anonymizer
https://raw.githubusercontent.com/MobiDataLab/mdl-anonymizer/master/docs/videos/MDL_demo_final_v1_compressed.mp4
https://raw.githubusercontent.com/MobiDataLab/mdl-anonymizer/master/docs/videos/MDL_demo_final_v1_compressed.mp4
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 Module overview 

In D2.3 State of the Art on Transport and Mobility Data Protection Technologies, we studied a 
collection of anonymization methods for trajectory microdata in the literature. This study suggested 
that methods in that category tend to follow a common pattern that consists of data preprocessing, 
comparison or clustering of data according to some spatial (or spatiotemporal) distance metric 
between positions and/or trajectories and an optional final aggregation or filtering step. For this 
reason, we design our anonymization tool with a focus on modularity, where pseudonymization or 
anonymization methods can be built using different components dedicated to preprocessing, 
clustering, distance computation, aggregation, etc. 

On the other hand, we want our module to be as format-agnostic as possible, and thus we choose 
to load data from comma-separated values (CSV), which makes it directly compatible with tools such 
as QGIS and mobility data analysis libraries such as GeoPandas and scikit-mobility. The module is 
also able to load parquet files. Apache Parquet is an open-source, columnar data format designed 
for efficient data storage and retrieval. It provides efficient data compression, so parquet files are 
smaller than CSV files, and they can be read and written much faster. This decision, however, does 
not limit the possibility of adding additional data loading components to deal with different data 
formats. 

We implemented the following modules and methods (see Annex 6.3 for a detailed description): 
 
• Anonymization: methods for the anonymization of a dataset of trajectories. 

o Simple generalization 
o Protected generalization 
o Microaggregation 
o Time partition microaggregation 
o SwapAllLocations 
o Swapmob 

• Trajectory distances: methods to measure the distance between two trajectories. 
o Graph distance 
o Spatio-temporal distance 

• Aggregation: methods for the aggregation of trajectories (i.e., calculation of the centroid 
of a set of trajectories). 
o Mean trajectory 
o Closest trajectory to centroid 

• Analysis: methods for the analysis of a dataset of trajectories. 
o QuadtreeHeatMap 

• Clustering: methods for the clustering a set of trajectories. 
o MDAV  

• Measures: methods to measure the utility and privacy of a dataset of trajectories. 
o Information loss via RMSE 
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o Information loss via normalized RMSE 
o Propensity score 
o Disclosure risk via record linkage 

The anonymization module can be used as a Python library but it also provides a command line 
interface (CLI) that lets users to use all the module functionalities in a straightforward way.  The 
module is also ready to be deployed in a server and to process requests through an API. 
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   Command line interface 

The developed package provides a command line interface (CLI) that lets users anonymize a 
mobility dataset, perform privacy-preserving mobility analysis, compute some utility measures over 
both the original and the anonymized datasets and filter a dataset in a straightforward way. 

$ python –m mdl_anonymizer anonymize -f parameters_file.json 

Annex 6.4 provides a detailed description of how to use this command line interface.  
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 API 

The anonymization module is also ready to be deployed in a server to provide all its functionality 
remotely. 

To start the server application, use the following command: 

$ uvicorn mdl_anonymizer.server.main_api:app --reload --host 0.0.0.0 --port 8000 

4.1. End points 

• POST /anonymize/  
o Upload a dataset to be anonymized. 
o Params:  

• Input_dataset 
• config_file 

• POST /analyze/  
o Upload a dataset to be analyzed. 
o Params: 

• Input_dataset 
• config_file 

• POST /compute_measures/ 
o Compute measures over the original and the anonymized dataset 
o Params: 

• original_dataset 
• anonymized_dataset 
• config_file 

• POST /filter/ 
o Upload a dataset to be filtered 
o Params: 

• Input_dataset 
• config_file 

Sometimes the previous tasks take some time to compute. For this reason, all the previous endpoints 
return a task_id:  

{ 
  "status": "OK", 
  "message": "Your task is being processed. Use the 'GET /task/' endpoint to obtain the 
results later", 
  "task_id": "30c2ad9df0f9470abfd8198b4cb4f86a" 
} 
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After some time, the result can be obtained from the following endpoint: 

• GET /task/?task_id={task_id} 

4.2. Using the command line interface to query the API 

The command line interface can also be used to send requests to the API.  

First, define the server API address in the ‘/server/config_api.json’ file:  

{ 
    "api_server": "http://127.0.0.1:8000" 
} 

 

These are the available commands:  

$ python -m mdl_anonymizer anonymize-api -f parameters_file.json 

$ python -m mdl_anonymizer analysis-api -f parameters_file.json 

$ python –m mdl_anonymizer measures-api -f parameter_file.json  

$ python –m mdl_anonymizer filter-api -f parameter_file.json 

The same parameter files than used in the standalone use case can be used in this case.  

After some time, the result can be obtained by using the following command: 

$ python -m mdl_anonymizer get-task -t {task_id} 
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 Conclusions  

This document presented the anonymization module of the MobiDataLab Transport Cloud prototype 
and accompanies the demonstrator available at https://github.com/MobiDataLab/mdl-
anonymizer. 

The final version of the anonymization module includes 6 anonymization methods, 1 privacy-
preserving analysis method and 5 methods to compute different utility and privacy metrics. It also 
provides a command line interface (CLI) that lets users to use all the module functionalities in a 
straightforward way.  The module is also ready to be deployed in a server and to process requests 
through an API. 

The anonymization module has been designed with a focus on modularity, where pseudonymization 
or anonymization methods can be built using different components dedicated to pre-processing, 
clustering, distance computation, aggregation, etc. We have focused on making it easy to add new 
methods and components, in order to encourage contributions from other researchers. 

The anonymization module has been used to anonymize, for example, a very large dataset provided 
by HOVE to make it public to the participants in the Mobidatalab X-athons. This dataset collects the 
daily requests sent to the Navitia route planner1 during 2022 and the first quarter of 2023 starting or 
ending in the Île-de-France region. The responses included in the dataset are not real journeys but 
routes proposed by the planner. Every route includes the start and end points as well as some transit 
points. Since this information could jeopardize the privacy of the users, the dataset was anonymized 
using the “Time partition Microaggregation” method, a version of the well-known microaggregation 
method for very large mobility datasets where the application of microaggregation would not be 
feasible. 

However, although the anonymization module let users to protect mobility datasets in a simple way, 
choosing the right anonymization method and parameters is a complex problem that requires a 
nuanced view and careful consideration. In general, one always has to make a decision on the 
desired trade-off between privacy and utility, favoring one or the other depending on the use case 
requirements.Complex anonymization procedures are typically manual processes involving several 
rounds of analysis and data transformation, tailored each technique and parameters to the dataset 
and user’s needs. Therefore, we recommend that these anonymization procedures be informed 
and/or performed by anonymization experts in collaboration with domain experts.  

  

                                                
1 https://doc.navitia.io/ 

https://github.com/MobiDataLab/mdl-anonymizer
https://github.com/MobiDataLab/mdl-anonymizer


 
 

   

 
MOBIDATALAB – H2020 G.A. No. 101006879 

 Funded by the 
European Union 

 

D4.10 - Data Protection Tools V2        15 
 

 Annexes 

6.1. Entity class diagram 

Entity classes implement the data model and the non-interactive functionalities (i.e., anonymization 
mechanisms of the anonymization module). To achieve a high performance, classes have been 
designed to be cohesive and decoupled, and associations between them have been defined with 
the logical navigation workflow.  

As example of the structure of classes of a module, Figure 1 shows the entity class diagram of the 
anonymization module. The rest of modules have the same structure but changing the name of the 
interface, factory class and implemented method classes. The main highlights of the anonymization 
class diagram are: 

• Dataset represents a data set of trajectories. Datasets are structured in several classes 
interrelated with navigable associations (Dataset → Trajectory → TimestampedLocation), so that 
all the data associated with a data set (i.e., trajectory values) can be efficiently queried during 
the anonymization process. 

• AnonymizationMethodFactory is a static class that has the method get called to obtain an 
instance of the anonymization method indicated in the parameter methodName. The dataset to 
be anonymized is passed in the dataset parameter and the parameters needed by the 
anonymization method are indicated in the parameters argument. This method creates and 
returns the instance of the specified anonymization method.  

• Anonymization algorithms are defined as specializations of the AnonymizationMethod Interface 
interface, which defines the interfaces of the main anonymization operations (run and 
getAnonymizedDataset). Thus, new anonymization algorithms or variations of the three currently 
implemented ones can be easily added by specializing classes and reusing or extending the 
code. 
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Figure 1. Entity class diagram 

6.2. Adding new methods 

The architecture design described above allows developers to easily add new methods, algorithms, 
or variations of the implemented ones mentioned in section 2. To do so, developers should simply 
follow the next steps: 

1. Create a Python class that implements (inherits from), respectively: 

a. AnonymizationMethodInterface, for new anonymization methods 
b. TrajectoryAggregationInterface, for new aggregation methods 
c. AnalysisMethodInterface, for new analysis methods 
d. ClusteringInterface, for new clustering methods 
e. MeasuresMethodInterface, for new measure methods 
f. DistanceInterface, for new trajectory distance methods 

2. The constructor of the new class must receive as arguments first the original dataset and 
then the necessary parameters for the new method. 

3. Implement the inherited class method run() by including the code that executes the logic of 
the new method (e.g., in the case of a new anonymization method, the routine that 
anonymizes the original dataset) 
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4. Include the reference description to the new class method in the config.json file located at 
the root of the project library (below is the structure of the config.json file including the 
references to the currently developed methods). The reference must be included inside the 
method type (anonymization, clustering, aggregation, trajectory_distances, analysis, or 
measures) and it must contain the name of the method and the path name of the new class. 

 
{ 
  "anonymization_methods": { 
    "SimpleGeneralization": { 
      "class": 
"mdl_anonymizer.anonymization_methods.Generalization.Simple.SimpleGeneralization" 
    }, 
    "ProtectedGeneralization": { 
      "class": 
"mdl_anonymizer.anonymization_methods.Generalization.Protected.ProtectedGeneralization" 
    }, 
    "SwapLocations": { 
      "class": 
"mdl_anonymizer.anonymization_methods.SwapLocations.SwapLocations.SwapLocations" 
    }, 
    "SwapMob": { 
      "class": "mdl_anonymizer.anonymization_methods.SwapMob.SwapMob.SwapMob" 
    }, 
    "Microaggregation": { 
      "class": 
"mdl_anonymizer.anonymization_methods.Microaggregation.Microaggregation.Microaggregation" 
    }, 
    "TimePartMicroaggregation": { 
      "class": 
"mdl_anonymizer.anonymization_methods.Microaggregation.TimePartMicroaggregation.TimePartM
icroaggregation" 
    } 
  }, 
 
  "clustering_methods": { 
    "SimpleMDAV": { 
      "class": "mdl_anonymizer.clustering.MDAV.SimpleMDAV.SimpleMDAV" 
    } 
  }, 
 
  "aggregation_methods": { 
    "Mean_trajectory": { 
      "class": "mdl_anonymizer.aggregation.Martinez2021.mean_trajectory.Mean_trajectory" 
    }, 
    "Closest_locations_to_mean_trajectory": { 
      "class": 
"mdl_anonymizer.aggregation.Martinez2021.closest_locations_to_mean_trajectory.Closest_loc
ations_to_mean_trajectory" 
    }, 
    "Closest_trajectory_to_mean_trajectory": { 
      "class": 
"mdl_anonymizer.aggregation.Martinez2021.closest_trajectory_to_mean_trajectory.Closest_tr
ajectory_to_mean_trajectory" 
    } 
  }, 
 
  "trajectory_distances": { 
    "Martinez2021": { 
      "class": "mdl_anonymizer.distances.trajectory.Martinez2021.Distance.Distance" 
    } 
  }, 
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  "analysis_methods": { 
    "QuadTreeHeatMap": { 
      "class": "mdl_anonymizer.analysis_methods.QuadTreeHeatMap.QuadTreeHeatMap" 
    } 
  }, 
 
  "measures_methods": { 
    "ScikitMeasures": { 
      "class": "mdl_anonymizer.measures_methods.ScikitMeasures.ScikitMeasures" 
    }, 
    "TrajectoriesRemoved": { 
      "class": "mdl_anonymizer.measures_methods.TrajectoriesRemoved.TrajectoriesRemoved" 
    }, 
    "Rsme": { 
      "class": "mdl_anonymizer.measures_methods.Rsme.Rsme" 
    }, 
    "PropensityScore": { 
      "class": "mdl_anonymizer.measures_methods.PropensityScore.PropensityScore" 
    }, 
    "RecordLinkage": { 
      "class": "mdl_anonymizer.measures_methods.RecordLinkage.RecordLinkage" 
    } 
  } 
} 

Example of config.json file 
 
Once the new method has been implemented and referenced in the config.json file as described 
above, the new method can be used in the same way as those already developed and currently 
included in the library as described in Annex 6.4. 

6.3. Developed methods 

This section presents a detailed description of the software components implemented in the current 
version of the anonymization module. As described in annex 6.1, anonymization mechanisms can 
be built from different components, including distance computation between locations and 
trajectories, aggregation and clustering algorithms, and postprocessing operations. 

6.3.1. Trajectory distances 

Many of the trajectory anonymization mechanisms in the literature (refer to D2.3, Section 6) consist, 
in some way, in reducing the unicity of trajectories typically by grouping or aggregating the ones that 
are similar. This similarity is measured with a distance metric to quantify the resemblance of the 
trajectories to be grouped or aggregated. This distance must consider both the space and time 
dimensions. In the following subsections, we describe the methods to compute a distance between 
two trajectories that have been developed so far and integrated into the anonymization module. 
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6.3.1.1. Graph distance 

This method, presented in [1], is based on the computation of a spatial distance between pairs of 
trajectories only when they are ‘contemporaries’ (that is, they overlap in time). The spatial distance 
between each pair of trajectories is only computed for locations within the time interval that they 
share. Then a graph is built where i) the nodes represent trajectories; ii) nodes Ti and Tj are adjacent 
only if they are contemporaries, and iii) the weight of the edge (Ti, Tj) is the distance between the 
trajectories Ti and Tj. Given the distance graph for T = {T1,…, Tn }, the distance d(Ti, Tj) for two 
trajectories is easily computed as the minimum cost path between the nodes Ti and Tj, if such path 
exists. 

Figure 2 shows an example of distance graph. T1 and T2 are adjacent because they overlap in time 
and a distance exists between them. However, T2 and T4 are not connected because they are not 
contemporaries and their distance is not defined. T1 and T8 are not connected (they do not overlap 
in time) but their distance can be computed as the minimum cost path between the nodes, in this 
case d = 6.01. 

 
Figure 2. A distance graph. Red arrows are the shortest path between T1 and T8. 

6.3.1.2. Spatio-temporal distance 

Most of the spatial distances can be extended into spatio-temporal distances by balancing the weight 
of the spatial and temporal dimensions [5]. Additionally, since each trajectory may have a different 
number of points, a method to sample, match and compare individual points within trajectories is 
needed. 

Dynamic time warping (DTW) [3] is one of the most popular algorithms to measure the distance 
between trajectories. The DTW algorithm searches through all locations in two trajectories for a pair 
of points at a minimum distance. The computational cost of DTW is O(mn), where m and n are the 
number of points in each of the trajectories. In [5], authors propose the spatio-temporal linear 
combine (STLC) distance, where spatial and temporal similarities are linearly combined according 
to a parameter ʎ which assigns a weight to both time and space similarities. The computational cost 
of STLC is quadratic O(mn). 
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In [2] we defined a distance measure based on DTW and STLC that tries to find the best match 
between pairs of points in the trajectories with a low computation cost. The computational cost of the 
distance calculation is just O(h) where h is the average number of points in the two trajectories, 
which makes this distance suitable for large data sets. To calculate the distance, the algorithm 
selects a list of h representative pairs of points, proportional to the number of points in each 
trajectory. Only these points are considered during the distance calculation. Figure 3 shows an 
example of the pairs of points selected to compare trajectories Ta and Tb. Origin and destination 
points of the trajectories are always selected. 

 
Figure 3. Trajectory distance calculation. Arrows show the pairs of points selected to calculate the distance between 

trajectories Ta and Tb 

Once a pair of points has been matched, the distance between them is computed. Similar to STLC, 
we define a distance that linearly combines spatial and temporal distances between pairs of points: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 �(𝑥𝑥𝑖𝑖𝑠𝑠 ,𝑦𝑦𝑖𝑖𝑠𝑠), �𝑥𝑥𝑗𝑗𝑏𝑏 ,𝑦𝑦𝑗𝑗𝑏𝑏�� + 𝜆𝜆 ∙ (|𝑑𝑑𝑖𝑖𝑠𝑠 − 𝑑𝑑𝑗𝑗𝑏𝑏| ∙ 𝑉𝑉𝑠𝑠𝑏𝑏) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 is the spatial distance between coordinates (𝑥𝑥𝑖𝑖𝑠𝑠,𝑦𝑦𝑖𝑖𝑠𝑠) and �𝑥𝑥𝑗𝑗𝑏𝑏 ,𝑦𝑦𝑗𝑗𝑏𝑏�, and 𝑉𝑉𝑠𝑠𝑏𝑏 is the mean 
velocity of trajectories Ta and Tb. The temporal distance |𝑑𝑑𝑖𝑖𝑠𝑠 − 𝑑𝑑𝑗𝑗𝑏𝑏| is multiplied by the mean velocity 
of trajectories 𝑉𝑉𝑠𝑠𝑏𝑏 to convert it to a spatial distance that can be added to 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠. To mitigate the 
excessive weight of the temporal distance (because implicitly assumes that subjects are constantly 
moving away from each other) we weight the temporal component with a parameter 𝜆𝜆 = 𝐷𝐷

𝑉𝑉∙𝑇𝑇
, where 

D is the maximum distance between points in the data set, V is the mean velocity of the trajectories 
in the data set and T is the maximum time difference between points in the data set. 

6.3.2. Trajectory aggregation 

Trajectory aggregation consists in replacing a set of trajectories by a single representative, namely 
the centroid of the set. Since the replacement causes information loss, the calculation of accurate 
centroid trajectories is crucial to retain the utility of the anonymized data set as much as possible. 
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6.3.2.1. Mean trajectory 

In [2], we propose a trajectory aggregation algorithm with linear computational cost which makes it 
suitable for large data sets. The algorithm works as follows: being Q a set of trajectories to be 
aggregated, the trajectory aggregation algorithm calculates h as the mean of points in the trajectories 
included in Q. Similar to how the distance computation presented in 6.3.1.2 works, we select a 
sample of h points from each trajectory in Q, proportionally to the number of points. This yields h sets 
of |Q| points each. The centroid (𝑑𝑑𝑐𝑐 , 𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐) of each of the h sets is calculated as the component-wise 
mean of the |Q| points in the set. Finally, the centroid trajectory Qc is obtained as the concatenation 
of the h centroids, that is, 𝑄𝑄𝑐𝑐 = {(𝑑𝑑1𝑐𝑐 ,𝑥𝑥1𝑐𝑐 ,𝑦𝑦1𝑐𝑐), … , (𝑑𝑑ℎ𝑐𝑐 ,𝑥𝑥ℎ𝑐𝑐 ,𝑦𝑦ℎ𝑐𝑐)}. 

Figure 4 shows an example of aggregation of two trajectories Ta and Tb. The arrows show the sample 
points selected from each trajectory. The resulting centroid trajectory Qc is depicted with a dotted 
line. 

 
Figure 4.Aggregation of trajectories. The arrows show the points selected to aggregate the trajectories Ta and Tb. The 

dotted line represents the centroid trajectory taken as output of the aggregation 

6.3.2.2. Closest trajectory to centroid 

The aggregation process of a set of trajectories results in a centroid that represents the aggregated 
trajectories. This process implies some information loss because the original trajectories are 
replaced with the calculated centroid. In the mean trajectory calculation described in the previous 
section, the information loss is minimal because the centroid is the mean of the aggregated 
trajectories. However, the resulting centroid trajectory could contain locations that are not consistent 
with the domain of the dataset. For example, in a dataset of taxi cabs trajectories, the resulting 
trajectory could contain off road locations which are impossible to occur in this dataset. In certain 
cases, we might need that the aggregated trajectories are possible in the dataset. To do so, as 
alternative to the mean trajectory, we propose to calculate the centroid as the closest trajectory to 
the mean of the aggregated trajectories as follows: being Q a set of trajectories to be aggregated, 
we calculate the mean trajectory Qc as described in the previous section, and, finally, we obtain the 
centroid trajectory Q’c as the trajectory in Q  that minimizes the distance to Qc. The resulting trajectory 
contains locations existing in the dataset but, at the cost of more information loss with respect to the 
mean trajectory due to the additional replacement of the mean trajectory by the closest one. 



 
 

   

 
MOBIDATALAB – H2020 G.A. No. 101006879 

 Funded by the 
European Union 

 

D4.10 - Data Protection Tools V2        22 
 

6.3.3. Anonymization methods 

This section presents the anonymization mechanisms that have been implemented in the 
anonymization module. Along with the description of each method we provide some images showing 
the visual results of the anonymization. These images were generated from the cabs dataset 
described in Section 6.3.4.5, with 10,282 trajectories and 155,690 locations. Below is a visual 
representation of the original dataset: 

 

Figure 5.Original locations 

 

Figure 6.Paths generated from the original locations 

6.3.3.1. Simple Generalization 

One of the strategies to anonymize trajectory datasets are based on mitigating the disclosure risk. 
This kind of strategies follow the utility-first anonymization approach. They do not provide any formal 
privacy guarantees but aim to reduce reidentification risks by applying different techniques, such as 
noise addition, generalization and coarsening with heuristic parameter choice. After the application 
of such techniques, the disclosure risk is calculated (for some objective disclosure prevention, i.e., 
identity disclosure or attribute disclosure). If the obtained risk is still too high, the techniques are 
applied with more strict parameters. Several of these techniques can be applied both in the context 
of location-based services and in static trajectory microdata sets. 

A naive approach is to hide the original locations by means of generalization, specifically, replacing 
exact positions in the trajectories by approximate positions, i.e., points by centroids of areas. If a 
tessellation file is not provided, the method first builds a regular spatial tessellation which covers the 
whole bounding box of the dataset. Then, we replace every location of the dataset with the centroid 
of the corresponding tile. If more than one consecutive locations of the same trajectory lie in the 
same tile, we can choose keeping them with their original timestamps or aggregating them by 
computing the average of all these timestamps. 
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Figure 7. Generalized locations generated using a 
squared tessellation 

 

Figure 8. Paths generated from the previous anonymized 
locations 

 

Figure 9. Generalized locations using a custom 
tessellation. In this case, the zip codes of San Francisco 

 

Figure 10. Paths generated from the previous 
anonymized locations 

 

However, although all the exact locations have been obfuscated, some “anonymized” trajectories 
could be still linked to the original ones because certain combination of spatiotemporal points could 
uniquely identify a record in a database or an individual. Hence, we need more refined methods to 
try to mitigate Record Linkage attacks (See Section 6.3.4.4).  

6.3.3.2. Protected Generalization 

An attacker with access to the anonymized trajectory dataset may know: 1) the details of the schema 
used to anonymize the data; 2) the fact that a given user U is in the dataset; and 3) a number KL of 
locations relative to U and the time at which they were visited (with a certain precision).  
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With this information, the attacker could try to infer the anonymized locations corresponding to the 
known ones and identify the entire trajectory relative to U. 

k-Anonymity limits the capability of an attacker who knows a set of features on a subject (some 
locations and/or timestamps in the case of trajectory data) to successfully re-identify individuals in a 
released dataset. A trajectory dataset satisfies k-anonymity if, for each combination of locations 
and/or timestamps, at least k trajectories share the same combination. Thus, the probability of 
correct re-identification is at most 1/k. 

The ProtectedGeneralization method aims to build a k-anonymous version of the original dataset by 
means of generalization and suppression. It consists of several steps: 

ProtectedGeneralization algorithm 
Requires: X: dataset of trajectories 

KL: the length of the attacker background knowledge 
 k: level of privacy (minimal number of trajectories sharing the same combination of 

locations) 
tiles_filename: custom tessellation 
tile_size: if a custom tessellation is not provided, size of every tile in a squared 
tessellation  
time_interval: size of every time level 
strategy: how to generalize locations within the same tile (compute average or take 
the tile centroid) 
time_strategy: generalize timestamps? 
 

Outputs: X’: k-anonymized version of X 
  

1. If tiles is None: 
  generate a spatial squared tessellation of the territory covered by X 

2. if time_interval is not None: 
3.  expand the tessellation in a third dimension  
4. If tiles is None: 
5.  optimize the generated tessellation of every time level by merging some tiles 
6. transform all trajectories into a sequence of tiles 
7. compute all combinations of size KL and count appearances 
8. while a combination appears less than k times:  
9.  modify trajectory sequences by removing tiles appearing in bad combinations 

10.  compute again combinations of size KL and count appearances 
11. create dataset X’ by generalizing trajectories depending on remaining trajectory 

sequences, and parameters strategy and time_strategy 
 

If a custom tessellation is not provided, the first step of the ProtectedGeneralization method is to 
generate a square tessellation of the geographical area covered by the trajectories in the dataset. A 
user can define the size of each tile in the tessellation by specifying the parameter tile_size. The 
larger the size of every tile is, the more trajectories and locations will be preserved in the anonymized 
dataset, but with less precision.  



 
 

   

 
MOBIDATALAB – H2020 G.A. No. 101006879 

 Funded by the 
European Union 

 

D4.10 - Data Protection Tools V2        25 
 

The user can also protect the time dimension, by defining a time_interval. A kind of 3D tessellation 
is built, with a spatial tessellation defined for every time level containing the locations with timestamps 
between the defined bounds. 

If a custom tessellation is not provided, after building it and mapping all the locations to the 
corresponding tiles, we perform an optimization preprocessing by merging some tiles in the same 
time level with a number of locations lower than 3k (see Figure 12). This improves the probability of 
preserving combinations. Each trajectory is then transformed into a sequence of visits to the resulting 
tiles. 

 

Figure 11. Squared tessellation 

 

Figure 12. Squared tessellation with merged tiles 

Now we can generate a generalized version of the dataset X. However, to complete the 
anonymization procedure, we need to ensure that X’ is a k-anonymous version of X. Firstly, we 
compute all existing combinations of size KL and count the occurrences of each combination. KL is 
also a parameter defined by the user and represents the number of locations that an attacker could 
know from a user U. A larger KL, more locations removed from the original dataset.   

Next, we identify and break the ‘bad combinations’ (those whose appear less than k times) by 
removing some tiles from the trajectory sequences. For each trajectory sequence, we remove the 
tiles appearing in the ‘bad combinations’, starting from the most to the least common. In case of tie, 
we check the tiles appearing the ‘good combinations’ to decide which tile remove first.  

After processing all the trajectory sequences, we have broken all the ‘bad combinations’, but we 
might have created new ones. Therefore, we compute all existing combinations of size KL again and 
count the occurrences of each combination. If we find any new ‘bad combinations’, we repeat the 
removal process until no new ‘bad combinations’ are generated. 

Finally, the last step is to create the anonymized dataset X’ from the remaining trajectory sequences. 
To do so, a user can choose between computing the average of the locations within each tile (which 
improves utility) or taking the centroid of the tile as the generalized location, using the parameter 
strategy. Parameter time_strategy allows the user to decide whether to preserve the original 
timestamps or to take the same timestamp for every tile (improving privacy but harming utility). The 
decision should consider the time_interval parameter and the precision of the attacker’s knowledge 
regarding the time when the known locations were visited.  
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For example, if we assume that an attacker only knows the date and the hour (but not the exact 
minute) when a location was visited, we can define a 60-minute time interval and preserve the 
original timestamps because all the locations in the same tile share the same hour and are 
indistinguishable to the attacker. On the other hand, if the user wants to protect the dataset assuming 
that an attacker knows the accurate timestamp of a specific location, we should use the same 
timestamp for all the locations, which will improve privacy but reduce the utility of the dataset. 

 

Figure 13. Generalized locations generated using a 
squared tessellation and protected with K=3 and KL=2 

 

Figure 14. Paths generated from the previous 
anonymized locations 

Comparing the previous figures with the figures from section 6.3.3.1 (Simple Generalization) shows 
that a significant number of locations and trajectories have been removed, losing detail and, 
therefore, utility. However, we can ensure that all the remaining trajectories are indistinguishable 
from others given the predefined parameters. 

6.3.3.3. Microaggregation 

Even though k-anonymity has usually been enforced via generalization of values, this entails a large 
information loss for high-dimensional and spread data such trajectories. A more utility-preserving 
alternative to generalization is microaggregation [2]. Trajectory microaggregation is based on 
partitioning the data set into disjoint clusters containing each at least k similar trajectories. Once the 
clustering of the data set is complete, the trajectories in each cluster are aggregated by replacing 
them with the cluster centroid. During the clustering stage, trajectories are grouped minimizing their 
intra-cluster distance (see section 6.3.1). In the aggregation step, the centroid of the data set is 
calculated as the trajectory in the data set that minimizes the distance to the rest of trajectories (see 
section 6.3.2). In this manner, the resulting microaggregated data set minimizes the information loss 
incurred when enforcing k-anonymity. 

The microaggregation algorithm works as follows: 

Microaggregation algorithm 
Requires: X: dataset of trajectories 

 k: level of privacy (minimal number of trajectories in a cluster) 
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Outputs: X’: k-anonymized version of X 
  

1. calculate the centroid c of the complete dataset X 
2. X_remaining = X 
3. while |X_remaning| >= 3k: 
4.  select the most distant trajectory r from the centroid c 
5.  select the most distant trajectory s from the trajectory r 
6.  generate a cluster formed by the trajectory r and the k-1 trajectories closest to r, 

and remove them from X_remaining 
7.  generate a cluster formed by the trajectory s and the k-1 trajectories closest to s, 

and remove them from X_remaining 
8. while |X_remaning| >= 2k: 
9.  select the most distant trajectory r from the centroid c 

10.  generate a cluster formed by the trajectory r and the k-1 trajectories closest to r, 
and remove them from X_remaining 

11. form a cluster with the remaining trajectories in X_remaning 
12. create dataset X’ replacing each original trajectory by the centroid of the cluster it 

belongs to 
 

The microaggregation algorithm gives a heuristic for k-anonymizing a set of trajectories. Given a set 
X of trajectories, the algorithm first calculates the centroid c of the dataset X (see section 6.3.2). 
Then, the algorithm constructs a cluster around the most distant trajectory r from the centroid c with 
r and the k-1 closest trajectories to r. After that, it takes the most distant trajectory s to r, and it creates 
a cluster with trajectory s and the k-1 closest trajectories to s. Then, all trajectories clustered in steps 
4 to 10 are removed from the set of remaining trajectories. The algorithm iterates until fewer than 2k 
trajectories unclustered remain, and, in step 11, it forms a final cluster with them. Finally, in step 12, 
the algorithm replaces each original trajectory with the centroid of the cluster to which the trajectory 
belongs (see section 6.3.2 about the centroid calculation of trajectories). 

Since the microaggregation algorithm builds clusters by grouping the closest trajectories together, 
the resulting microaggregated dataset minimizes the information loss incurred when enforcing k-
anonymity. 

Figure 15 shows an example of the anonymization of trajectories by microaggregation. The 
anonymized trajectory (red) is the result of the aggregation of k nearest trajectories (depicted in blue, 
green and orange) included in a cluster, in this case, of size k=3. 
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Figure 15. Example of anonymization with the microagreggation method 

The next figures show the general result of the anonymization. The number of original locations and 
trajectories is preserved although, as shown in Figure 16, some locations are not consistent with the 
domain of the dataset (e.g., those appearing in the ocean). Nevertheless, the number of these 
‘impossible’ locations is very small compared to the size of the dataset. If we need to generate real 
locations, we can use an alternative aggregation method as described in section 6.3.2.2.  

 
Figure 16. Anonymized locations using microaggregation 

with k=3 

 
Figure 17. Paths generated from the previous locations 

 
 
 

(Other colors)  Original trajectories 
 

Anonymized trajectory 
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6.3.3.4. Time Partitioned Microaggregation 
(TimePartMicroaggregation) 

As stated in the previous section, microaggregation is a utility-preserving method to enforce k-
anonymity in high-dimensional and spread data such trajectories. The partition and aggregation 
steps produce some information loss. The goal of microaggregation is to minimize the information 
loss according to some utility metric. For this reason, microaggregation is considered a good 
approach to anonymize trajectories when the utility of original data should be preserved as much as 
possible. On the other hand, the runtime of the microaggregation algorithm can be unfeasible for 
large datasets and small k values. This is because the computational cost of the microaggregation 
algorithm scales  𝑂𝑂 �𝑛𝑛

2
𝑘𝑘� �, where 𝑛𝑛 is the number of trajectories in the dataset and k is the minimum 

number of trajectories sharing the same combination (that is, the desired level of privacy). 

To solve this issue in large datasets, we have based on microaggregation to propose the method 
Time Partitioned Microaggregation of trajectories (TimePartMicroaggregation) with the following 
features: 

• Since the runtime lowers as 𝒏𝒏 decreases, we propose to first partition the original dataset into 
smaller datasets based on the time dimension of the trajectories. 

• Each partition contains the trajectories in a given time interval. In this way, the trajectories 
contained in the resulting small datasets are similar in time and can be clustered based only on 
their spatial distance. 

• This method results in a feasible runtime for large datasets at the cost of a higher (but 
assumable) information loss compared to the microaggregation method. This is because the 
microaggregation method searches for similar trajectories through the entire dataset to group 
clusters while the TimePartMicroaggregation method searches only in the smaller partitions of 
the dataset. 
 

The Time Partitioned Microaggregation algorithm works as follows: 

Time Partitioned Microaggregation (TimePartMicroaggregation) algorithm 
Requires: X: dataset of trajectories 

 K: level of privacy (minimal cluster size of the microaggregation) 
 Interval: time interval in each partitioned dataset 

Outputs: X’: k-anonymized version of X 
  

1. X_sorted = sort(X) in function of the mean of timestamps of each trajectory in X 
2. datasets = ∅ 
3. while size X_sorted >= k: 
4.  partition = ∅ 
5.  add to partition all trajectories inside the time interval and remove them from 

X_sorted  
6.  while size partition < k:  
7.   add to partition the first trajectory of X_sorted and remove it from X_sorted 
8.  add partition to datasets 
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9. add to the last partition the remaining trajectories in X_sorted 
10. microaggregate each partition in datasets (as explained in section 6.3.3.3)  

 
 
The input of the algorithm consists of the dataset of trajectories (X), the level of privacy (k), that is 
the minimal number of trajectories in a cluster, and the desired time (interval) in which the dataset X 
will be partitioned. First, the dataset X is sorted according to the mean of the timestamps of each 
trajectory. Then, as long as there are at least k trajectories left to include in a partition, the algorithm 
creates a partition with all trajectories in X that are included in the desired time interval (steps 4 
through 8). Each partition should have at least k trajectories to create at least one cluster of size k 
during the microaggregation process. If there are less than k trajectories in the time interval, 
trajectories from the next interval are added to complete the partition (steps 6 and 7). The remaining 
trajectories are added to a final partition (step 9). In this way, the algorithm outputs a set of datasets, 
each one with at least k time-similar trajectories. Finally, in step 10, each partition is microaggregated 
as described in section 6.3.3.3. 

Since the trajectories contained in each partition dataset are similar in the time dimension, we can 
use only the spatial distance to microaggregate trajectories during the clustering process. This 
makes it easier to compute the distance between trajectories. 

If the input trajectory dataset is too large to be anonymized using the microaggregation method (due 
to an unfeasible runtime), the TimePartMicroaggregation method should be considered. 

 

Figure 18. Anonymized locations using 
TimePartMicroaggregation with k=3 and dividing the 

dataset with an interval=1 hour 

 

Figure 19. Paths generated from the previous locations 

 

 

Comparing the results with those obtained with the Microaggregation method, a loss of information 
and utility can be observed.  
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6.3.3.5. Swap All Locations 

This method is based on the ReachLocation mechanism proposed by [1]. Protection is achieved by 
permuting the locations in trajectories among other trajectories. The method works as follows: first, 
a cluster is created around a randomly selected location based on some spatial and temporal 
threshold parameters provided by the user. If the cluster does not include at least k locations from 
at least k different trajectories, the thresholds are increased until we obtain the required number of 
locations or the thresholds reach user-defined maximum values. If a valid cluster is built, the locations 
are swapped among the k trajectories (by changing their trajectory IDs) and marked as swapped. If 
no valid cluster can be found around a location, it is removed. This process continues until no more 
“unswapped” locations appear in the data set. 

This method provides great utility since locations in the resulting anonymized trajectories are true, 
fully accurate original locations. No fake, generalized or perturbed locations are given in the 
anonymized data set of trajectories. Besides that, the flow and directions of the original trajectories 
are well preserved. However, this mechanism does not offer a formal guaranty of privacy. If a whole 
trajectory is unique, the user could be identified.  

To mitigate this problem, we have developed a simple trajectory anonymization mechanism like that 
described in section 6.3.3.2. After swapping all the locations in the dataset, we build a square grid 
and convert each trajectory into a sequence of tiles. We then analyse the generated sequences to 
find combinations of 2 consecutive tiles that occur less than KL times in the anonymized dataset. If 
such a combination is found, the locations within one of the tiles are removed. 

Figure 20 shows an example of this anonymization mechanism. The yellow circles are the original 
locations. In green are depicted all the locations from the original dataset that meet the spatial and 
temporal requirements to be swapped with one of the original locations to be anonymized. Finally, 
in red we can see the locations that have been selected to build the anonymized trajectory. 
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Figure 20. Example of anonymization with the SwapAllLocations method 

Figure 21 shows the resulting anonymized locations using SwapAllLocations. All these locations are 
real, and, at first glance, it looks like that only some locations (those that are too unique in terms of 
space and/or time) have been removed. However, Figure 22 shows that trajectories have also been 
distorted, although they preserve the flow and direction of the original ones. 

 

 
Figure 21. Locations in the anonymized dataset using 

SwapLocations, with a spatial threshold between 100 and 
500 m and a temporal threshold between 1 and 2 

minutes. 

 
Figure 22. Paths generated from the anonymized 

locations 
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6.3.3.6. SwapMob 

SwapMob, proposed by J. Salas, D. Megías and V. Torra [4] is a perturbative anonymization method 
based on swapping segments of trajectories with other trajectories. When two locations in two 
different trajectories are close enough (when they cross each other), according to some threshold of 
proximity and time set by the user, the two remaining subtrajectories are swapped between the two 
original trajectories (that is, the ID of the previous locations of each trajectory are swapped). 
Changing pseudonyms (IDs) is equivalent to swapping the partial trajectories. If a trajectory does 
not cross any other one, and therefore, no subtrajectory is swapped with other trajectories, it is 
removed.  

Hence, the relation between data subjects and their data is obfuscated while keeping a precise 
aggregated data, such as the number of users and their directions on any given zone at a specific 
time, the locations that have been visited by different anonymous users or the average length of 
trajectories. 

Nevertheless, this comes at the cost of modifying the trajectories and losing individual trajectory 
mining utility. 

In Figure 23, we can see an example of the anonymization method. The anonymized trajectory (dark 
red) is made up of subsegments of several original trajectories. The first subsegment comes from 
the green trajectory and the following subsegments come from the pink, orange, yellow, purple, and 
blue trajectories. 

 
Figure 23. Example of anonymization with the SwapMob method 

 
Looking at the figures below, it looks like that both locations and trajectories are very well preserved. 
However, the individual trajectories are completely different from the original ones.  

(Other colors)  Original trajectories 
 

Anonymized trajectory 
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Figure 24. Anonymized locations using the SwapMob 
method 

 

Figure 25. Generated paths from previous locations 

6.3.4. Utility and privacy metrics 

To quantify the quality of the anonymized data, we estimate the utility of the resulting dataset by 
measuring the information loss caused by replacing the original values with their masked versions. 
On the other hand, we quantify the practical privacy obtained in the anonymized dataset by 
measuring the disclosure risk of the resulting data. In addition, we also measure the runtime required 
during the anonymization process to estimate the computational feasibility of the included methods. 
In the next sections, we present several utility and privacy metrics to quantify the quality of 
anonymized datasets.   

6.3.4.1. Information loss via RMSE 

The utility of the anonymized dataset is measured as the information loss resulting from the 
anonymization of trajectories. Information loss measures the differences between the original and 
anonymized datasets. To do this, we use the well-known Root Mean of Square Errors (RMSE). For 
a given anonymized dataset X’, RMSE is defined as the sum of squares of distances between original 
trajectories in X and their masked versions in the anonymized dataset X’. We measure the 
information loss as the RMSE calculated as follows:  

where 𝑛𝑛 is the number of trajectories in the dataset, 𝑇𝑇𝑖𝑖 is a trajectory in the original dataset and 𝑇𝑇𝑖𝑖′ is 
the anonymized version of the trajectory 𝑇𝑇𝑖𝑖. To calculate the distance between trajectories (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), we 
use the spatio-temporal distance described in section 6.3.1.2.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
1
𝑛𝑛
��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑇𝑇𝑖𝑖,𝑇𝑇𝑖𝑖′)2

𝑛𝑛

𝑖𝑖=1
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Notice that with a high RMSE, that is, a high information loss, a lot of data are damaged, leading to 
a decrease of the utility of the anonymized dataset. 

6.3.4.2. Information loss via normalized RMSE 

When it is possible to calculate the maximum distance between trajectories in the dataset X, the 
normalized version of RSME can be calculated in order to obtain the information loss value relative 
to the maximum possible information loss in the dataset. The normalized RMSE is calculated by 
dividing the distance between two trajectories by the maximum distance between any two trajectories 
in the dataset. The resulting distance is in the range [0,1] and it is calculated as follows: 

where 𝑛𝑛 is the number of trajectories in the dataset, 𝑇𝑇𝑖𝑖 is a trajectory in the original dataset and 𝑇𝑇𝑖𝑖′ is 
the anonymized version of trajectory  𝑇𝑇𝑖𝑖. The spatio-temporal distance described in section 6.3.1.2 
is used to calculate the distance (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) between trajectories and the 𝑚𝑚𝑚𝑚𝑥𝑥 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑛𝑛𝑐𝑐𝑑𝑑 is the previously 
calculated maximum distance between trajectories in the original dataset X. 

6.3.4.3. Propensity score 

In statistics, propensity score matching is a method commonly used in inference studies to compare 
outcomes among subjects that received a treatment, policy, or other intervention versus those that 
do not. To use Propensity score as a measure of utility, we need to train a model to estimate group 
membership between original and transformed datasets (e.g., anonymized or synthetic data). If 
original and anonymized datasets cannot be distinguished (small distinguishability score), then the 
utility of the anonymous data is high.  

Unlike RMSE metric, the propensity score is a data-agnostic utility metric that does not require a 
specific distance calculation for the specific data type. In addition, the propensity score is sensitive 
to anonymization via suppression of records because it results in an unbalanced input data for the 
model. On the other hand, the choice of the model for the propensity score calculation might 
influence the utility estimation of the anonymized data. With this in mind, logistic regression models 
are commonly used. 

The computation of the propensity score in mobility data works as follows: 

Propensity score calculation algorithm 
Requires: X: dataset of original trajectories 

 X’: dataset of anonymized trajectories 
Outputs: Propensity score 

  

𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
1
𝑛𝑛
���

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑇𝑇𝑖𝑖,𝑇𝑇𝑖𝑖′)
𝑚𝑚𝑚𝑚𝑥𝑥 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑛𝑛𝑐𝑐𝑑𝑑
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1. Preprocess original and anonymized datasets so that they are amenable for machine 
learning model training as follows: 

  Use of tessellation to discretize the domain 
  0-pad sequences to make them all the same length 
  (optionally) normalize data in range (1,1) or (0,1) 

2. Merge original and anonymized datasets and add a binary label A with value 1 for 
anonymized records and 0 for original records, shuffle the records in the merged 
dataset 

3. Train a ML model to regress the label A based on the rest of attributes (positions 𝑥𝑥𝑖𝑖,𝑗𝑗) 
and call it Â 

4. Let the propensity score 𝒑𝒑�𝑖𝑖 of record 𝑑𝑑 be the probability 𝑝𝑝(𝐴𝐴 = 1|𝑥𝑥𝑖𝑖,𝑗𝑗) 
5. The propensity score is then:  

 

 
 
To calculate the propensity score, first the original and anonymized datasets are pre-processed to 
allow for training a model. To do this, in step 1, tessellation is applied to generalize locations to obtain 
tractable trajectory sequences. The trajectory sequences are padded with “0” at the left to equalize 
their lengths to the length of the largest sequence. Additionally, the data is normalized for better 
model performance. Then, in step 2, the original and anonymized datasets are merged, labelling 
each anonymized trajectory sequence with a label A with value 1, and for original trajectory 
sequences with value 0. Then, the resulting merged dataset is shuffled. Once the input data is pre-
processed, the machine learning model is trained to estimate the probability that a sequence belongs 
to the class A=1. Finally, the utility is estimated as the propensity score mean-squared error 
described in equation of step 5, where n is the total number of sequences in the input dataset and   �̂�𝑝𝑖𝑖 
is the probability that a sequence i belongs to the class A=1. 

The resulting propensity score is in the range [0,1] where the higher the score, the higher the 
information loss (the lower the utility of data). 

6.3.4.4. Disclosure risk via record linkage 

To measure the practical privacy resulting of the anonymization process, we measure the disclosure 
risk of the resulting dataset. The disclosure risk estimates the percentage of trajectories of the 
original dataset that can be correctly matched to the trajectories in the anonymized dataset, that is, 
the percentage of correct Record Linkages (RL). For an anonymized dataset X of trajectories, the 
record linkage is calculated as follows: 

 

 𝑅𝑅𝑅𝑅 = 100 ×
∑ Pr (𝑥𝑥𝑗𝑗′)𝑥𝑥𝑗𝑗∈𝑋𝑋

𝑛𝑛
 

𝑈𝑈 =
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𝑛𝑛
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where 𝑛𝑛 is the number of original trajectories and Pr (𝑥𝑥𝑗𝑗′) is the record linkage probability for an 
anonymized trajectory calculated as: 

 

 

where 𝐺𝐺 is the set of original trajectories that are at minimum distance from 𝑥𝑥𝑗𝑗′. The spatio-temporal 
distance described in section 6.3.1.2 is used to calculate the minimum distance between trajectories. 
The lower RL, the lower the probability of identity disclosure and the higher the privacy of the 
anonymized dataset. 

The computational cost of the record linkage calculation scales 𝑂𝑂(𝑛𝑛2).This is because the possible 
matching of each original trajectory in the anonymized dataset is searched through the entire original 
dataset. This search that can be unfeasible from the point of view of runtime for large datasets. To 
deal this problem, we propose to search possible record linkage matching in a subset of trajectories 
of size 𝑚𝑚 instead of the entire dataset. This faster record linkage works as follows: 

Fast Record linkage calculation algorithm 
Requires: X: dataset of original trajectories 

 X’: dataset of anonymized trajectories 
 window: the desired size of the subset of anonymized trajectories 

Outputs: The Record linkage percentage 
  

1. calculate the centroid c of the complete dataset X (see section 6.3.2) 
2. calculate the distance to c of all trajectories in datasets X and X’   
3. sort trajectories in X in function of the distance to c  
4. for each trajectory 𝑥𝑥𝑗𝑗′ in X’: 
5.  take the window number of trajectories from X that have the most similar distance 

to the centroid c that have the trajectory 𝑥𝑥𝑗𝑗′  
6.  calculate the Pr�𝑥𝑥𝑗𝑗′�, as described previously in this section, for the window subset 

of original trajectories 
7. Calculate RL as described previously in this section 

 

As the dataset X is sorted in function of the distance to the centroid c, we can take the subset window 
with a computational cost of 𝑂𝑂(log𝑛𝑛). Then, the computational cost of the fast record linkage scales 
𝑂𝑂(𝑛𝑛′𝑚𝑚), where 𝑛𝑛′ is the number of anonymized trajectories and 𝑚𝑚 is the size of window, that is, the 
desired number of trajectories in the subset. This record linkage can estimate the disclosure risk in 
a feasible runtime, depending on the size of the window parameter, at the cost of lose some linkages.  

The higher the window size the higher the accuracy of the record linkage estimation and the higher 
the runtime.     

 

Pr�𝑥𝑥𝑗𝑗′� = �
0   𝑑𝑑𝑖𝑖  𝑥𝑥𝑗𝑗    𝑛𝑛𝑛𝑛𝑑𝑑 ∈ 𝐺𝐺

1
|𝐺𝐺|

    𝑑𝑑𝑖𝑖   𝑥𝑥𝑗𝑗 ∈ 𝐺𝐺
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6.3.4.5. Comparison of the anonymization methods 

As described in the previous section, every anonymization method preserves different utility metrics. 
To demonstrate the performance and accuracy of the anonymization methods, we have anonymized 
two real-world datasets with the anonymization methods described in section 6.3.3. Then, we 
measured and compared the resulting utility and privacy metrics described in section 6.3.4. The 
experiments were run on an Intel i5-8250U with 16 GB of RAM. In the next sections, we summarize 
some utility and privacy results.  

Evaluation Data 

The first dataset we have used was built from the mobility data of taxi cabs in San Francisco, USA, 
provided by the Exploratorium Museum within the Cabspotting project2. The data set contains the 
trajectories of approximately 500 taxi cabs in the San Francisco Bay Area recorded during May 2008. 
The data capture the usual features of realistic trajectories (i.e., short trajectories in areas with a 
dense population). Each record contains the GPS coordinates and absolute times of all trajectory 
points. To obtain a large and dense dataset, we joined trajectories recorded in a day. We considered 
only the trajectories that correspond to cabs that were occupied by a customer. This resulted in 
realistic trajectories with meaningful and precise origins, paths, and destinations, rather than 
seemingly random routes of cabs wandering or waiting for customers. We omitted trajectories with 
fewer than 5 locations and trajectories with some wrong locations (detected by computing the speed 
between two consecutive locations). The resulting dataset contains 10,282 trajectories and 155,690 
locations, with a mean of 15 locations per trajectory. 

The second dataset has been built from logs provided by Hove of real queries sent to the Navitia 
travel planner3. In this case, the records correspond to trajectories that the planner has created from 
an origin and a destination location that the user introduced. The dataset contains 192,855 
trajectories including 759,123 locations which is useful to test the performance of anonymization and 
metric methods in large datasets. As each trajectory represents a trip, many of the locations are 
common, such as train, bus stations or tourist locations. For this, this dataset has a mean of 4 points 
per trajectory, which is considerably less than the taxi cabs dataset. 

Evaluation of Microaggregation methods 

In this section, we compare the utility, privacy and runtime obtained by microaggregation methods. 
We applied the original microaggregation algorithm, described in section 6.3.3.3, to anonymize the 
evaluation datasets. As stated above, the fact that Microaggregation exhaustively searches the 
closest trajectories to be grouped, we expect that this method will obtain the best utility (at the cost 
of long runtime). For this, we consider microaggregation results as baseline for the comparatives. 
Then, we have anonymized the same datasets with the proposed Time Partitioned Microaggregation 
algorithm, described in section 6.3.3.4, and we compared the metrics described in section 6.3.4 on 
the resulting datasets. Taking into consideration the cardinalities of evaluation datasets, the k-
anonymity levels for all methods (parameter k) have been set between 3 and 100.  

                                                
2 http://www.exploratorium.edu/id/cab.html 
3 https://navitia.io/ 

http://www.exploratorium.edu/id/cab.html
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For the TimePartMicroaggregation algorithm (tpm in figures), the interval parameter has been ranged 
between 60 and 3600 seconds which corresponds from 5 min. to 1 hour. 

We first evaluate to what extent each microaggregation algorithm preserves the data utility for a 
certain privacy level. As stated, the utility of an anonymized output is evaluated in terms of 
information loss, that is, the differences between the original and anonymized data. To quantify the 
information loss, we measured the RSME and propensity score of the resulting data as described in 
section 6.3.4. Figure 26  and Figure 27 depict respectively the RSME and propensity score values 
obtained in the two datasets (on the left the taxi cabs dataset, on the right the Navitia dataset) for 
the different parameterizations of k for microaggregation and k and interval for 
timePartMicroaggregation.  

 

Figure 26. Taxi cabs (left) and Navitia (right) datasets show the evolution of RSME in the timePartMicroaggregation 
methods for different k and interval values, and in the microaggregation method for different k values. 

 

 

Figure 27. Taxi cabs (left) and Navitia (right) datasets show the evolution of propensity score in the 
timePartMicroaggregation methods for different k and interval values, and in the microaggregation method for different k 

values 

Information loss (RSME) Information loss (RSME) 

Information loss (Propensity score) Information loss (Propensity score) 
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Regarding the evolution of RSME shown in Figure 26, we observe for the two datasets that the 
microaggregation algorithm (black line) reduces the information loss compared with the 
timePartMicroaggregation method in all k and interval values. This was expected because 
microaggregation exhaustively searches through the entire dataset. We can also observe for all 
methods that the higher the k value the higher the information loss. This is because high k values 
imply more trajectories in each cluster which are masked in same trajectory in the aggregation step. 
In the case of interval values for the timePartMicroaggregation, the lower the time interval the higher 
the information loss. This is because the time interval delimits the subset of trajectories where the 
algorithm searches the closest ones to be grouped and aggregated, leading to higher information 
loss. The evolution of the propensity score has a correlated behavior with respect to RSME, so that, 
high values of k and low values of interval parameters entail high information loss. As stated in 
section 6.3.4.3, the difference here is that, while the RSME requires the calculation of distances 
between trajectories, the propensity score does not. 

Notice that for k=3 and k=5, the microaggregation algorithm is unable to anonymize the Navitia 
dataset, this is due to the size of the data and the excessive runtime needed to anonymize it. For 
this reason, as stated in section 6.3.3.4, we propose the timePartMicroaggregation method to solve 
the high computational cost of microaggregation algorithm in large datasets. Figure 28 shows the 
evolution of the necessary runtime to anonymize the evaluation datasets comparing 
microaggregation and timepartitonMicroaggregation algorithms. 

 

 

Figure 28. Taxi cabs (left) and Navitia (right) datasets show the necessary runtime in seconds to execute the 
timePartMicroaggregation method for different k and interval values, and the microaggregation method for different k 

values 

Regarding the runtime comparative shown in Figure 28 we can see that the 
timePartitionMicroaggregation algorithm (tpm in figure) can anonymize the two datasets in a feasible 
amount of time. We observe that the lower the interval the lower the runtime. This is because lower 
intervals imply splitting the dataset into smaller subsets in which the closest trajectories are 
searched, requiring less time in the search. In addition, the runtime is decreased when the k level is 
increased.  
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This is consistent with what was explained in section 6.3.3.4 about the computation cost of the 
microaggregation algorithm, that is 𝑂𝑂 �𝑛𝑛

2
𝑘𝑘� �, where higher k values decrease the computational 

cost. This is also the reason why the microaggregation algorithm is not able to anonymize large 
datasets for low values of k. We can conclude that, when the input trajectory data are too large to 
be anonymized by means of the microaggregation method, the timePartitionMicroaggregation 
method should be considered. 

Evaluation of anonymization methods 

The second analysis aims to compare all anonymization algorithms described in section 6.3.3.3. The 
k-anonymity level for methods which require it (parameter k for microaggregation and 
timePartitionMicroaggregation) has been set between 3 and 100. For the 
timepartitionMicroaggregation algorithm, we take a mean value of interval=900. Figure 29 and Figure 
30 show the information loss measured, respectively, with the RSME and propensity score obtained 
from the anonymized datasets applying microaggregation, timePartitionMicroaggregation, Simple 
generalization, SwapMob and SwapAllLocations algorithms described in section 6.3.3.3. 

 

 

Figure 29. Taxi cabs (left) and Navitia (right) datasets show the evolution of RSME in the timePartMicroaggregation, 
SwapAllLocations, SwapMob, SimpleGen and Microaggregation methods for different k values. 
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Figure 30. Taxi cabs (left) and Navitia (right) datasets show the evolution of propensity score in the 

timePartMicroaggregation, SwapAllLocations, SwapMob, SimpleGen and Microaggregation methods for different k 
values. 

Regarding microaggregation, timePartitionMicroaggregation and SwapAllLocations we observe that 
microaggregation obtains the best utility for all k values. Comparing timePartitionMicroaggregation 
and swapLocations we observe that the later obtains best results for very high k values. The 
swapMob and simpleGen methods results are immutable for the k values, this because they do not 
require a k parameter (which indicates the privacy level). The SimpleGen method obtains the best 
utility when it is measured calculating the RSME while the SwapMob method obtains the lower 
information loss if it is measured the propensity score. This is coherent with the fact that propensity 
score does not require a distance calculation and it is sensitive to the suppression of trajectories.  

The fact that some methods do not require the k privacy level parameter leads to the necessity of 
measure and compare the practical privacy of anonymization methods. To do this, we measure the 
disclosure risk of the anonymized datasets. Figure 31 show the disclosure risk comparative of all 
previously described methods by measuring the percentage of correct record linkages between 
trajectories in the anonymized and original datasets, as described in section 6.3.4.4. 

 

Figure 31. Taxi cabs (left) and Navitia (right) datasets show the evolution of disclosure risk in the 
timePartMicroaggregation, SwapAllLocations, SwapMob, SimpleGen and Microaggregation methods for different k 

values 
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Regarding the disclosure risk, as expected, we observe that, for microaggregation, 
timePartitionedMicroaggregation and swapAllLocations methods, the higher the k privacy level the 
lower the disclosure risk which is inversely correlated with the information loss studied above. 
Regarding swapMob and simpleGen methods, we observe that they incur in high disclosure risk in 
almost k privacy level of the other methods, only microaggregation in the taxi cabs dataset and 
swapAllLocations in the Navitia dataset have higher disclosure risk for very low values of k privacy 
level. This is coherent with the fact that swapMob and simpleGen methods obtains high utility but 
they do not guarantee a privacy level in the anonymized datasets. 

Finally, in Figure 32 we compare the necessary runtime to anonymize the evaluation datasets. We 
observe that the smaller dataset (taxi cabs) can be anonymized by all methods and k values in a 
feasible amount of time. However, the larger dataset (Navitia dataset) requires almost 12 hours to 
be anonymized by the swapAllLocations method and microaggregation requires an unfeasible 
amount of time to anonymize the dataset with low k privacy values. The rest of methods, 
timePartitionedMicroaggregation, swapMob and simpleGen can anonymize the larger dataset 
rapidly. 

 

Figure 32. Shows the evolution of the necessary runtime to anonymize the taxi cabs (left) and Navitia (right) datasets 
with the timePartMicroaggregation, SwapAllLocations, SwapMob, SimpleGen and Microaggregation methods for different 

k values 

Table 1 and Table 2 show, respectively, the percentage of trajectories that have been removed 
during the anonymization process of the taxi cabs dataset and Navitia dataset.  Note that the 
anonymized dataset via microaggregation and timePartMicroaggregation methods maintain the 
same number of trajectories that the original dataset.  

This is due to the aggregation step where each trajectory is substituted by the centroid of the cluster 
where it belongs, resulting in the same number of trajectories. Simple generalization removes very 
few trajectories (0.1%) and the other methods, swapAllLocations, protectedGen, and swapMob need 
to suppress the trajectories that could disclose privacy, specially, for high values of k. 
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Table 1. Percentage of trajectories removed in the anonymized version of the taxi cabs dataset for each anonymization 
method and k values 

k Microaggregation TimePart 
Microaggregation 

Swap 
AllLocations 

Protected 
Generalization 

Simple 
generalization SwapMob 

3 0.00 0.00 1.46 19.65 0.1 18.74 

5 0.00 0.00 3.40 37.21 0.1 18.74 

10 0.00 0.00 12.82 59.02 0.1 18.74 

25 0.00 0.00 42.99 79.33 0.1 18.74 

50 0.00 0.00 97.64 83.33 0.1 18.74 

100 0.00 0.00 97.70 99.43 0.1 18.74 

 

Table 2. Percentage of trajectories removed in the anonymized version of the Navitia dataset for each anonymization 
method and k values 

k Microaggregation TimePart 
Microaggregation 

Swap 
AllLocations 

Simple 
generalization SwapMob 

3 0.00 0.00 16.23 0.2 10.68 

5 0.00 0.00 24.97 0.2 10.68 

10 0.00 0.00 37.23 0.2 10.68 

25 0.00 0.00 53.82 0.2 10.68 

50 0.00 0.00 66.91 0.2 10.68 

100 0.00 0.00 82.64 0.2 10.68 

   

Considering the results obtained in the comparative study, we can conclude that we should use 
microaggregation or swapLocations to retain high utility of the anonymized dataset for high k privacy 
levels. In the case of large datasets or low k values, we should use timePartitionMicroaggregation. 
SwapMob and simpleGen methods can be only considered when we need to anonymize in a very 
fast way and the k privacy level is unknown.   
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6.3.5. Privacy-preserving analysis methods 

6.3.5.1. QuadTreeHeatMap 

For analysing the locations density without compromising privacy, a k-anonymous heat map 
generation method has been implemented. This consists of dividing the map into a set of size-variant 
rectangular sectors containing at least k locations. The locations density for each sector represents 
the “heat” of that area. 

The approach is based on quadtree spatial decomposition, which recursively divides the 2D space 
into groups of four rectangular sectors. Initially, the quadtree consists of a single empty rectangular 
sector. As locations from the dataset are inserted, if a sector contains enough locations, it is divided 
into four equally sized subsectors. In this way, denser areas will have smaller sectors. To generate 
the heatmap, a top-bottom processing of the quadtree sectors is performed to obtain a set of sectors 
containing at least k locations (k-anonymous). To satisfy this requirement in a straightforward way, 
if a sector (equivalent to a quadtree node) has a child with less than k locations, all the child sectors 
are ignored, and only the parent sector is added to the heatmap. Alternatively, we can try to merge 
the child sectors to get new sectors with at least k locations. Furthermore, a new quadtree can be 
created using the locations from the merged sectors, which may result in fine-grained (smaller) k-
anonymous sectors. For each sector of the resulting heatmap, the number of locations it contains is 
divided by its area, obtaining its location density. 

In Figure 35 the heatmap obtained for the city of San Francisco is shown. Each sector is painted 
according to its density value, showing that most of the locations are gathered in the city center and 
the southern airport. 



 
 

   

 
MOBIDATALAB – H2020 G.A. No. 101006879 

 Funded by the 
European Union 

 

D4.10 - Data Protection Tools V2        46 
 

 
Figure 33. Original locations 

 
Figure 34. Heatmap computed from the original locations 

 
Figure 35. Privacy-preserving heatmap 

 

 

6.4. Command line user guide 

6.4.1. Anonymization methods 

The parameter values to configure the anonymization methods are provided to the application using 
a JSON file:  

$ python -m mdl_anonymizer anonymize -f parameter_file.json 
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There are some common parameters to all the anonymization methods: 

Parameter Description 

method 

Type: string 

The name of the anonymization method to be executed. Must be one of the 
included in the main configuration file ‘config.json’. For the moment, 
must be one of the following: 

• SimpleGeneralization 
• ProtectedGeneralization 
• Microaggregation 
• TimePartMicroaggregation 
• SwapAllLocations 
• SwapMob 

input_file 

Type: string 

The dataset to be anonymized  

output_folder 

Type: string 

Folder to save the generated output datasets 

main_output_file 

Type: string, optional 

The name of the anonymized dataset 

params 

Type: JSON object, optional 

Specific parameters of the corresponding anonymized method 

 

6.4.1.1. Specific configuration parameters 

Each of the anonymization methods has some specific parameters that can be added to the 
parameters file:  

SimpleGeneralization 

Parameter Description 

tiles_filename 

Type: str, optional 

Tiles files for tessellation (geojson or shapefile) 

Default: None 

tile_size Type: int, optional 
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If a tiles file is not provided, a squared tessellation of size ‘tile_size’ is 
generated (in meters) 

default: 500 

overlapping_strategy 

Type: str, enumerate (“all”, “one”), optional 

If a several locations of the same trajectory end up in the same tile, keep all 
(“all”) or take just one and compute the average timestamp (“one”) 

Default: “all” 

 

JSON config file example for the Simple Generalization method: 

{ 
  "method": "SimpleGeneralization", 
  "input_file": "examples/data/cabs_dataset_20080608_0700_0715.csv", 
  "output_folder": "examples/output", 
  "main_output_file": "cabs_dataset_20080608_0700_0715_anonymized_simple.csv", 
  "params":  { 
    "tiles_filename": "examples/data/bb_SF_zipcodes.geojson" 
  } 
} 

ProtectedGeneralization 

Parameter Description 

tiles_filename 

Type: str, optional 

Tiles file for tessellation (geojson or shapefile) 

Default: None 

tile_size 

Type: int, optional 

If a tiles file is not provided, a squared tessellation of size ‘tile_size’ is 
generated (in meters) 

default: 500 

time_interval 

Type: int, optional 

Size of every time level (In minutes) 

default: None 

k 

Type: int, optional 

Level of privacy (minimal number of trajectories sharing the same 
combination of locations) 

default: 3 

knowledge Type: int, optional 
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Number of timestamped locations known by the attacker (attacker 
background knowldege) 

default: 2 

strategy 

Type: str, enumerate (“centroid”, “avg”), optional 

To generate the generalized locations compute the centroid of the tile 
(“centroid”) or the average of the locations within the tile (“avg”) 

Default: “avg” 

time_strategy 

Type: str, enumerate (“same”, “keep”), optional 

Keep the original timestamps (“keep”) or also generalize time by taking a 
specific timestamp for every time_level (“same”) 

Default: “keep” 

 
JSON config file example for the Protected Generalization method: 

{ 
  "method": "ProtectedGeneralization", 
  "input_file": "examples/data/cabs_dataset_20080608_0700_0715.csv", 
  "output_folder": "examples/output", 
  "main_output_file": "cabs_dataset_20080608_0700_0715_anonymized_prot.csv", 
  "params":  { 
    "k": 3, 
    "knowledge": 2, 
    "strategy":"avg" 
  } 
} 

Microaggregation 

Parameter Description 

k 

Type: int 

Minimum number of trajectories to be aggregated in a cluster 

clustering_method 

Type: JSON object 

Name and parameters (if any) of the method to cluster the trajectories. Must 
be one of those defined in ‘config.json’ 

default: SimpleMDAV 

aggregation_method 

Type: JSON object 

Name and parameters (if any) of method to aggregate the trajectories within 
a cluster. Must be one of those defined in ‘config.json’ 

Default: Mean_trajectory 
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JSON config file example for the Microaggregation method: 

{ 
  "method": "Microaggregation", 
  "input_file": "examples/data/cabs_dataset_20080608_0700_0715.csv", 
  "output_folder": "examples/output", 
  "main_output_file": "cabs_dataset_20080608_0700_0715_anonymized_micro.csv", 
  "params": { 
    "k": 3, 
    "clustering_method": { 
      "name": "SimpleMDAV", 
      "params": { 
        "trajectory_distance": { 
          "name": "Martinez2021", 
          "params": { 
            "p_lambda": 0.00657901067783612 
          } 
        } 
      } 
    }, 
    "aggregation_method": { 
      "name": "Mean_trajectory" 
    } 
  } 
} 

TimePartMicroaggregation 

Parameter Description 

k 

Type: int 

Minimum number of trajectories to be aggregated in a cluster 

default: 3 

Interval 

Type: int 

Time interval in each partitioned dataset (in seconds) 

Default: 900 (15 min)  

clustering_method 

Type: JSON object 

Name and parameters of the method to cluster the trajectories. Must be one 
of those defined in ‘config.json’  

default: SimpleMDAV 

aggregation_method 

Type: JSON object 

Name and parameters of method to aggregate the trajectories within a 
cluster. Must be one of those defined in ‘config.json’  

Default: Martinez2021.Aggregation 

 

JSON config file example for the Time Partitioned Microaggregation method: 
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{ 
  "method": "TimePartMicroaggregation", 
  "input_file": "examples/data/cabs_dataset_20080608_0700_0715.csv", 
  "output_folder": "examples/output", 
  "main_output_file": "cabs_dataset_20080608_0700_0715_anonymized_tpmicro.csv", 
  "params": { 
    "k": 3, 
    "interval": 60, 
    "clustering_method": { 
      "name": "SimpleMDAV", 
      "params": { 
        "trajectory_distance": { 
          "name": "Martinez2021", 
          "params": { 
            "p_lambda": 0 
          } 
        } 
      } 
    }, 
    "aggregation_method": { 
      "name": "Mean_trajectory", 
      "params": {} 
    } 
  } 
} 

SwapAllLocations 

Parameter Description 

k 

Type: int, optional 

Minimum number of locations of the swapping cluster 

default: 3 

min_r_s 

Type: int, optional 

Minimum spatial radius of the swapping cluster (in meters) 

default: 100 

max_r_s 

Type: int, optional 

Maximum spatial radius for building the swapping cluster (in meters) 

default: 500 

min_r_t 

Type: int, optional 

Minimum temporal threshold for building the swapping cluster (in 
seconds) 

default: 60 

max_r_t 

Type: int, optional 

Maximum temporal threshold for building the swapping cluster (in 
seconds) 
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default: 120 

tile_size 

Type: int, optional 

Size of tessellation to improve privacy at trajectory level 

default: 1000 

seed 

Type: int, optional 

Seed for the random swapping process 

default: None 

 

JSON config file example for the SwapAllLocations method: 

{ 
  "method": "SwapLocations", 
  "input_file": "examples/data/cabs_dataset_20080608_0700_0715.csv", 
  "output_folder": "examples/output", 
  "main_output_file": "cabs_dataset_20080608_0700_0715_anonymized_swap.csv", 
  "params": { 
    "k": 5, 
    "max_r_s": 600, 
    "max_r_t": 200, 
    "min_r_s": 150, 
    "min_r_t": 10, 
    "seed": 42 
  } 
} 

 

SwapMob 

Parameter Description 

spatial_thold 

Type: int, optional 

Maximum distance to consider two locations as close (in kilometers) 

default: 0.2 

temporal_thold 

Type: int, optional 

Maximum time difference to consider two locations as coexistent (in seconds) 

default: 30 

min_n_swap 

Type: int, optional 

Minimum number of swaps for a trajectory for not being removed. 

default: 1 

seed Type: int, optional 
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Seed for the random swapping process 

default: None 

 

JSON config file example for the SwapMob method: 

{ 
  "method": "SwapMob", 
  "input_file": "examples/data/cabs_dataset_20080608_0700_0715.csv", 
  "output_folder": "examples/output", 
  "main_output_file": "cabs_dataset_20080608_0700_0715_anonymized_swapmob.csv", 
  "params": { 
    "spatial_thold": 0.1, 
    "temporal_thold": 60, 
    "seed": 42 
  } 
} 

 

6.4.1.2. Clustering methods 

Some anonymization methods (such as Microaggregation or Time Partitioned Microaggregation) 
require a clustering method to partition the dataset into disjoint clusters. 

SimpleMDAV 

Parameter Description 

trajectory_distance 

Type: JSON object, optional 

Name and parameters (if any) of the method to compute the distance between 
two trajectories. Must be one of those defined in ‘config.json’ 

default: Martinez2021 

aggregation_method 

Type: JSON object, optional 

Name and parameters (if any) of the method to aggregate the trajectories 
within a cluster. Must be one of those defined in ‘config.json’ 

default: Mean_trajectory 

 

6.4.1.3. Aggregation methods 

Mean_Trajectory 

No params 
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Closest_trajectory_to_mean_trajectory 

Parameter Description 

p_lambda 
Type: float 

Weight of the temporal component (see section 6.3.1.2) 

6.4.1.4. Trajectory distances 

Martinez2021 

Parameter Description 

p_lambda 

Type: float 

Weight of the temporal component (see section 6.3.1.2). If p_lambda is not 
provided, the value is computed. If p_lambda = 0, the temporal component is 
not considered. Use this option if all locations of the dataset are from a short 
time interval. 

default: None 

 

See the config file example for the Microaggregation anoymization method. 

6.4.2. Utility metrics 

As previously mentioned, the anonymization module also includes tools to compute and compare 
some utility and privacy metrics of original and anonymized datasets. Again, the parameter values 
to compute the measures are provided to the application through a JSON file:  

$ python –m mdl_anonymizer measures -f parameter_file.json 

The parameter file contains all the measures to be computed with their corresponding parameters: 

Parameter Description 

original_dataset 

Type: str 

Path of the original dataset 

anonymized_dataset 
Type: str 

Path of the anonymized dataset 

output_folder 

Type: str 

Output folder 
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main_output_file 
Type: str 

Name of the main output file 

measures 

Type: Array of JSON objects 

List of measures to be computed. Every measure includes their own 
parameters (if any). They should appear in the main configuration file 
(config.json). Currently, these are the developed measures:  

• ScikitMeasures 
• Rsme 
• PropensityScore 
• RecordLinkage 
• TrajectoriesRemoved 

 

Example of a ‘measures’ parameter file: 

{ 
  "original_dataset": "examples/data/cabs_dataset_20080608_0700_0715.csv", 
  "anonymized_dataset": "examples/data/cabs_dataset_20080608_0700_0715_an.csv", 
  "output_folder": "examples/output/", 
  "main_output_file": "measures_cabs_dataset_20080608_0700_0715_simple.json", 
  "measures": [ 
    { 
      "name":  "ScikitMeasures", 
      "params":  { 
       "sort": true, 
        "tesselation_meters": 250 
     } 
    }, 
    { 
      "name": "TrajectoriesRemoved", 
      "params": {} 
    }, 
    { 
      "name": "Rsme", 
      "params": { 
        "trajectory_distance": { 
          "name": "Martinez2021", 
          "params": { 
            "p_lambda": 0.005492628237142597 
          } 
        } 
      } 
    }, 
    { 
      "name": "PropensityScore", 
      "params": {} 
    }, 
    { 
      "name": "RecordLinkage", 
      "params": { 
        "percen_window_size": null, 
        "trajectory_distance": { 
          "name": "Martinez2021", 
          "params": { 
            "p_lambda": 0.005492628237142597 
          } 
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        } 
      } 
    } 
  ] 
} 

 

6.4.2.1. ScikitMeasures 

We leverage on the well-known scikit-mobility4 library to compute some utility metrics:  

• visits_per_location 
• distance_straight_line 
• uncorrelated_location_entropy 
• random_location_entropy 
• mean_square_displacement 

 
To compute some of these measures, the datasets to be compared need to be generalized using a 
simple squared tessellation.  

Parameter Description 

sort 

Type: Boolean, optional 

Sort the datasets by timestamp 

default: True 

tessellation_meters 

Type: int, optional 

Size of the squared tessellation (in meters) 

Default: 250 

 
 

6.4.2.2. RSME 

Information loss measures the differences between the original and anonymized datasets (see 
section 6.3.4.1). This measure only needs the trajectory distance to use:  

Parameter Description 
trajectory_distance Type: JSON object, optional 

                                                
4 https://github.com/scikit-mobility/scikit-mobility 
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Name and parameters (if any) of the method to compute the distance between 
two trajectories. Must be one of those defined in ‘config.json’ 

default: Martinez2021 

6.4.2.3. PropensityScore 

In order to compute the propensity score (section 6.3.4.3). 

Parameter Description 

tiles_size 

Type: int, optional 

Size of the squared tessellation (in meters) 

default: 200 

time_interval 

Type: int, optional 

Consider the temporal component, size of every time interval (in seconds) 

default: None 

seed 

Type: int, optional 

Seed for the random process 

Default: none 

6.4.2.4. RecordLinkage 

To measure the practical privacy resulting of the anonymization process, we can also measure the 
disclosure risk of the resulting dataset (section 6.3.4.4). 

Parameter Description 

trajectory_distance 

Type: JSON object, optional 

Name and parameters (if any) of the method to compute the distance between 
two trajectories. Must be one of those defined in ‘config.json’ 

default: Martinez2021 

percen_window_size 

Type: float, optional 

Percentage of trajectories to be considered. If it is not provided, a percentage 
is computed depending on the size of the dataset. 

Default: none 
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6.4.2.5. TrajectoriesRemoved 

This measure has no parameters. It computes the percentage of locations and trajectories removed 
in the anonymized dataset. 

6.4.3. Privacy-preserving analysis methods 

The parameter values to configure the anonymization methods are provided to the application using 
a JSON file:  

$ python -m mdl_anonymizer analysis -f parameters_file.json 

There are some common parameters to all the analysis methods: 

Parameter Description 

method 

Type: string 

The name of the anonymization method to be executed. Must be one of 
those defined in ‘config.json’. For the moment only ‘QuadTreeHeatMap’ is 
implemented 

input_file 

Type: string 

The dataset to be analyze  

output_folder 

Type: string 

Folder to save the outputs  

main_output_file 

Type: string, optional 

The name of the main output file 

params 

Type: JSON object, optional 

Parameters of the analysis method 

 

Each of the analysis methods has some specific parameters that can be added to the parameters 
file: 

6.4.3.1. QuadTreeHeatMap 

Parameter Description 
min_k Type: int, optional 
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Minimum number of locations allowed to coexist in a QuadTree sector 

Default: 5 

min_sector_length 

Type: int, optional 

Minimum side length for a QuadTree sector (in meters) 

Default: 100 

merge_sectors 

Type: Boolean, optional 

If True, sector with an insufficient number of locations will be merged with 
neighbouring sectors 

Default: True 

split_n_locations 

Type: int, optional 

Max number of locations allowed in a QuadTree sector before it is split into 4 
subsectors. Must be greater than min_k.  

Default: min_k 

 

JSON config file example: 

{ 
  "method": "QuadTreeHeatMap", 
  "input_file": "examples/data/cabs_dataset_20080608_0700_0715.csv", 
  "output_folder": "examples/output", 
  "main_output_file": "cabs_dataset_20080608_0700_0715_QuadTreeHeatMap.json", 
  "params": { 
    "min_k": 5, 
    "min_sector_length": 50, 
    "merge_sectors": true 
  } 
} 

 

6.4.4. Filtering 

In addition, the anonymization module also provides some filtering functionality. Again, these 
functionalities can be extended by developing further filtering methods. 

$ python –m mdl_anonymizer filter -f parameter_file.json 

In this case, the config file has the following parameters: 

Parameter Description 
input_filename Type: string 
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Filename of the dataset to be filtered  

output_filename 

Type: string, optional 

The name of the output file 

methods 

Type: array of JSON objects 

Name and value of each filtering methods that should be applied to the 
dataset. Currently just two filtering mechanisms are implemented: 

• min_locations: Remove trajectories with less that {value} locations 
• max_speed: Remove trajectories with a speed greater than {value} 

between two of its locations. 
 

JSON config example:  

{ 
  "input_filename": "examples/data/cabs_dataset_20080608_0700_0715.csv", 
  "output_filename": "examples/output/filtered_cabs_dataset_20080608_0700_0715.csv", 
  "methods": [ 
    { 
      "min_locations":  5 
    }, 
    { 
      "max_speed":  300 
    } 
  ] 
} 
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MobiDataLab consortium 

The consortium of MobiDataLab consists of 10 partners with multidisciplinary and complementary 
competencies. This includes leading universities, networks and industry sector specialists. 
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