

MobiDataLab is funded by the EU
under the H2020 Research and
Innovation Programme (grant
agreement No 101006879).

30/11/2023
Author(s): Mohamed KARAMI (AKKODIS) - Francesco LETTICH (CNR)

 D4.8 Data Enrichment

Processors (V2)

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 2

Funded by the
European Union

 Summary sheet

Deliverable Number
D4.8

Deliverable Name
Data Enrichment Processors (V2)

Full Project Title MobiDataLab, Labs for prototyping future Mobility Data sharing cloud
solutions

Responsible Author(s)
Mohamed KARAMI (AKKODIS) - Francesco LETTICH (CNR)

Contributing Partner(s)
CNR

Peer Review
Alberto BLANCO JUSTICIA (URV) - Aliki BENMAYOR (KUL)

Contractual Delivery Date
30-09-2023 (extended to 30-11-2023)

Actual Delivery Date
30-11-2023

Status
Final

Dissemination level
Public

Version
V1.0

No. of Pages
53

WP/Task related to the
deliverable WP4/T4.4

WP/Task responsible
AKKODIS/AKKODIS

Document ID
MobiDataLab-D4.8-DataEnrichmentProcessorsV2_v1.0

Abstract This deliverable is a report to provide an overview of the Task 4.4 version
2 demonstrator, which encompasses the geographical and semantic
enrichment demonstrators.

 Legal Disclaimer

MOBIDATALAB (Grant Agreement No 101006879) is a Research and Innovation Actions project funded by the EU

Framework Programme for Research and Innovation Horizon 2020. This document contains information on

MOBIDATALAB’s core activities, findings, and outcomes. The content of this publication is the sole responsibility

of the MOBIDATALAB consortium and cannot be considered to reflect the views of the European Commission.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 3

Funded by the
European Union

 Project partners

Organization Country Abbreviation

AKKODIS France AKKODIS

CONSORZIO INTERUNIVERSITARIO PER L'OTTIMIZZAZIONE E
LA RICERCA OPERATIVA

Italy ICOOR

AETHON SYMVOULI MICHANIKI MONOPROSOPI IKE Greece AETHON

CONSIGLIO NAZIONALE DELLE RICERCHE Italy CNR

HOVE France HOVE

HERE GLOBAL B.V. Netherlands HERE

KATHOLIEKE UNIVERSITEIT LEUVEN Belgium KUL

UNIVERSITAT ROVIRA I VIRGILI Spain URV

POLIS - PROMOTION OF OPERATIONAL LINKS WITH
INTEGRATED SERVICES

Belgium POLIS

F6S NETWORK IRELAND LIMITED Ireland F6S

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 4

Funded by the
European Union

 Document history

Version Date Organization Main area of changes Comments

0.1 05/08/2023 AKKODIS Deliverable outline Draft

0.2 10/10/2023 CNR
Updates to the Semantic
enrichment processor part

Draft

0.3 15/10/2023 AKKODIS
Updates to the
Geographical enrichment
processor part

Draft

0.4 10/11/2023 AKKODIS, CNR
Integrated feedback from
the Hackathon

Draft

0.5 23/11/2023 URV, KUL -- Peer review

0.6 24-29/11/2023 CNR/AKKODIS All
TL & Coordinator
Quality check

1.0 30/11/2023 AKKODIS All
Final Version
Submission

 Executive Summary

The deliverable 4.8 is a comprehensive report that outlines the advancements in the second
version of the MobiDataLab data enrichment processors. This report offers an in-depth overview of
the updated versions of the geographical and semantic enrichment demonstrators. Building upon
the previous Deliverable 4.7, which introduced the initial versions of these enrichment processors,
the current document highlights significant updates, i.e.:

- We report on the backend changes to the geographical enrichment processor, which have

been done to improve the processing algorithm and the interoperability with the API services

catalogue.

- We present the newly developed Semantic Enrichment Processor Web API, a critical

component designed to expose the functionalities of the three modules comprising the

semantic enrichment processor's back-end to remote users. This development transforms the

semantic enrichment processor into a service integrated within the Transport Cloud platform.

Furthermore, informed by feedback received during the MOBIDATALAB Hackathon, we

provide potential applications of the semantic enrichment processor in addressing various

aspects of the walkability issue presented in the Paris Challenge, offering interesting ideas for

its utilization.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 5

Funded by the
European Union

 Table of contents

2.2.1. Pre-processing module ... 12

2.2.2. Trajectory segmentation module .. 13

2.2.3. Enrichment module ... 14

3.1.1. Manual build and dependencies installation ... 25

3.1.2. Build and run as a docker image through Gitlab-CI.. 27

3.1.3. Build and run as a docker image through Travis-CI ... 28

3.1.4. Pull and run MDL-Geo-Enrichment docker image .. 29

3.2.1. Here API enrichment: ... 32

3.2.2. Navitia API enrichment: .. 34

3.2.3. OSM API enrichment: ... 34

3.2.4. GTFS API enrichment: .. 34

3.2.5. GeoJson API enrichment: ... 35

3.2.6. Generic Json API enrichment: .. 36

3.2.7. Enrich Open Street Map lines: .. 39

3.2.8. API demonstration: ... 40

5.1.1. Specifications of the Pandas dataframe containing the raw trajectories 45

5.1.2. Specifications of the Pandas dataframe containing the output of the pre-processing
module .. 45

5.1.3. Specifications of the Pandas dataframes containing the output of the segmentation
module .. 46

5.1.4. Specifications of a file containing a dataset of points of interest. 47

5.1.5. Specifications of a file containing weather information ... 47

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 6

Funded by the
European Union

5.1.6. Specifications of a file containing social media posts ... 47

5.1.7. Details on the ontology used to structure the information within the RDF graph 48

 List of Figures

Figure 1: Execution of the script mat_builder_ui.py ... 11
Figure 2: Demonstrator backend. .. 12
Figure 3: pre-processing module, as shown in the UI. ... 13
Figure 4: Trajectory segmentation module, as shown in the UI. .. 14
Figure 5: Enrichment module, as shown in the UI. .. 15
Figure 6: initial view of the subgraph associated with the user ID 402 ... 21
Figure 7: Social Media Post aspect. .. 22
Figure 8: The subgraph rooted in the node related to the trajectory 224641 of the user 402. 23
Figure 9: The Mobility data enrichment architecture .. 25
Figure 10: MDL-Geo-Enrichment pipeline on Gitlab-CI ... 27
Figure 11: Travis-CI’s environment variables .. 28
Figure 12: MDL-Geo-Enrichment pipeline on Travis CI ... 28
Figure 13: Swagger UI – MDL-Geo-Enrichment API list .. 30
Figure 14: Sequence diagram of the enrichment process ... 31
Figure 15: Sequence diagram of the enrichment process ... 32
Figure 16: Here stations API enrichment ... 33
Figure 17: GeoJSON Api enrichment .. 35
Figure 18: Generic JSON Api enrichment ... 38
Figure 19: OSM lines enrichment .. 40
Figure 20: SpringDoc-openapi modules .. 41
Figure 21: Geographical enrichment API documentation .. 42
Figure 22: Overview of the Move class with its subclasses ... 49
Figure 23: Overview of the Stop class with its subclasses. .. 49
Figure 24: Overview of the Weather and Social Media Post classes. .. 50

 List of tables

Table 1: Here API parameters... 33
Table 2: GeoJson API parameters .. 36
Table 3: Generic Json API parameters ... 39

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 7

Funded by the
European Union

 Abbreviation and acronyms

Abbreviation Meaning

API Application programming interface

CI Continuous integration

CD Continuous delivery / deployment

GeoJSON Geographical JSON representation

GTFS General transit feed specification

JSON JavaScript object notation

OSM Open Street Map format

GIS Geographic information system

MDL-Geo-Enrichment MobiDataLab geographical enrichment

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 8

Funded by the
European Union

 Introduction

1.1. Project overview

There has been an explosion of mobility services and data sharing in recent years. Building on this,

the EU-funded MobiDataLab project works to foster the sharing of data amongst transport

authorities, operators, and other mobility stakeholders in Europe. MobiDataLab develops knowledge

as well as a cloud solution aimed at easing the sharing of data. Specifically, the project is based on

a continuous co-development of knowledge and technical solutions. It collects and analyses the

advice and recommendations of experts and supporting cities, regions, clusters, and associations.

These actions are assisted by the incremental construction of a cross-thematic knowledge base and

a cloud-based service platform, which will improve access and usage of data-sharing resources.

1.2. Purpose of the deliverable

The Reference Data enrichment processor v2 is the second version of a prototype that contains a

set of open tools allowing data semantic and geographical enrichment.

1.3. Intended Audience & Review process

The dissemination level of the D4.8 deliverable is ‘public’ (PU).

1.4. Structure of the deliverable

This deliverable is organized as follows. Section 2 gives an overview of the Semantic enrichment

processor, highlighting the major updates that have been done with respect to the deliverable 4.7.

Similarly, Section 3 gives an overview of the Geographical enrichment processor, and highlights the

major changes done with respect to the deliverable 4.7. Finally, Section 4 provides the conclusions,

while Section 5 (i.e., Annexes) provides additional information and documentation concerning the

enrichment processors.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 9

Funded by the
European Union

 Semantic enrichment of mobility data (v2
demonstrator)

According to the Grant agreement specifications, the objective of Task 4.4 is to “[…] contribute to

the development of open tools allowing the enrichment of data […] by combining the data with other

datasets and gathering additional results”. Different data enrichment techniques will be provided as

open tools. More specifically, this section focuses on: “Enrich data semantically (combining with the

Linked Open Data cloud, RDF/SPARQL)”.

Accordingly, for the semantic enrichment of trajectories, we use the notion of multiple aspect

trajectory (MAT) (dos Santos Mello 2019). A multiple aspect trajectory expresses movement data

that is heavily semantically enriched with dimensions (i.e., aspects) representing various types of

semantic information (e.g., stops, moves, weather, traffic, events, and points of interest). Aspects

may be derived from different data sources and can be large in number, heterogeneous, or

structurally complex.

One important point of novelty is that enrichment aspects might be associated with individual

trajectory points, segments (i.e., sub-trajectories which are part of a larger trajectory), a whole

trajectory, or the moving objects that are generating the trajectories (e.g., an individual). For instance,

weather conditions might get associated with trajectory segments, thus indicating the weather

conditions that the objects associated with those segments encountered. Some Points of Interest

might get associated with a trajectory stop segment, thus indicating the point of interest that the

object associated with such segment visited during their stay. A move segment, i.e., part of a

trajectory during which its object moved, might be enriched with the transportation means used to

move. Personal data can be associated with the moving object (e.g., gender, social media profile,

etc.).

The semantic enrichment demonstrator is therefore focused on building such semantically enriched

trajectories in the context of the MobiDataLab project. The demonstrator has been derived from the

MAT-Builder system, which in turn is the result of several research works:

• Pugliese, C., Lettich, F., Renso, C. and Pinelli, F., 2022, June. Mat-builder: a system to build

semantically enriched trajectories. In 2022 23rd IEEE International Conference on Mobile

Data Management (MDM) (pp. 274-277). IEEE.

• Lettich, F., Pugliese, C., Renso, C. and Pinelli, F., 2023, March. A general methodology for

building multiple aspect trajectories. In Proceedings of the 38th ACM/SIGAPP Symposium

on Applied Computing (pp. 515-517).

• F. Lettich, C. Pugliese, C. Renso and F. Pinelli, "Semantic Enrichment of Mobility Data: A

Comprehensive Methodology and the MAT-BUILDER System," in IEEE Access, vol. 11, pp.

90857-90875, 2023

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 10

Funded by the
European Union

MAT-builder serves the purpose of showing how a semantic enrichment processor (1) can be

implemented purely on top of open-source libraries and tools, (2) is effectively able to semantically

enrich raw trajectories via the use of a variety of external data sources, and (3) can generate

knowledge graphs that can be subsequently imported in some RDF triple store of preference (e.g.,

GraphDB) for later analysis and querying, also in combination with Linked Open Data.

The second version of the demonstrator introduces a significant new component: the semantic

enrichment processor webAPI. The processor can now function both as an interactive user interface

and as an API server executed by a virtual machine within the Transport Cloud. With this webAPI,

users can remotely access the functionalities of the semantic enrichment processor using POST and

GET HTTP requests. Additionally, the webAPI enables users to combine the semantic enrichment

processor with other processors, hence enabling them to build their customized mobility data

processing pipelines. The semantic enrichment processor webAPI has been documented in Section

2.3.

The second version of the demonstrator also showcases a graphically revamped user interface, and

the use of a more advanced algorithm for detecting systematic stops. All these updates are

presented in Section 2.2. Finally, a video showcasing the second version of the semantic enrichment

demonstrator has been provided in the semantic enrichment processor’s GitHub repository1.

2.1. How to set up the semantic enrichment demonstrator

The semantic enrichment demonstrator consists of a set of Python scripts that make exclusively use

of open-source libraries. In the following, we illustrate the installation procedure needed to execute

the semantic enrichment demonstrator. The installation procedure has been tested on Windows 10,

Ubuntu (version > 20.x), and macOS.

1. The first step requires installing a Python distribution that includes a package manager. To this
end, we recommend installing Anaconda2 3, a cross-platform Python package manager and
environment-management system which satisfies the above criteria.

2. Once Anaconda has been installed, the next step requires setting up a virtual environment
containing the open-source libraries that our demonstrator requires during its execution. To this

end we provide a YAML file, mat_builder.yml, that can be used to set the environment up.

The user must first open an Anaconda PowerShell prompt. Then, the user must type in the prompt:

conda env create -f path\mat_builder.yml -n name_environment

1 https://github.com/MobiDataLab/mdl-semantic-
enrichment/blob/main/misc/videos/Semantic%20enrichment%20processor%20demonstrator%20v2%20dem
o.mkv
2 Anaconda installers are available at https://www.anaconda.com/products/distribution
3 The user can alternatively install Miniconda, i.e., a minimal version of Anaconda. Miniconda is available at
https://docs.conda.io/en/latest/miniconda.html

https://github.com/MobiDataLab/mdl-semantic-enrichment/blob/main/misc/videos/Semantic%20enrichment%20processor%20demonstrator%20v2%20demo.mkv
https://github.com/MobiDataLab/mdl-semantic-enrichment/blob/main/misc/videos/Semantic%20enrichment%20processor%20demonstrator%20v2%20demo.mkv
https://github.com/MobiDataLab/mdl-semantic-enrichment/blob/main/misc/videos/Semantic%20enrichment%20processor%20demonstrator%20v2%20demo.mkv
https://www.anaconda.com/products/distribution
https://docs.conda.io/en/latest/miniconda.html

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 11

Funded by the
European Union

where path represents the path in which mat_builder.yml is located, while name_environment

represents the name the user wants to assign to the virtual environment.

We report that the open-source libraries relevant to the demonstrator will also be relevant to the
semantic enrichment processor. These libraries are Pandas4, Geopandas5, scikit-learn6, scikit-
mobility7, rdflib8, PTRAIL9, and Dash10.

3. Once the environment has been created, the user must activate it in the prompt by typing conda
activate name_environment.

The user is now able to execute and use the demonstrator.

2.2. How to use the interactive user interface

To run the semantic enrichment processor’s interactive user interface, the user must first open an

Anaconda PowerShell prompt and then, within the virtual environment created during the installation

procedure, execute the Python script mat_builder_ui.py. Once executed, the script will tell the

user the address at which the interactive user interface can be accessed through some web browser

of preference (Figure 1).

Figure 1: Execution of the script mat_builder_ui.py

4 https://pandas.pydata.org/
5 https://geopandas.org/en/stable/
6 https://scikit-learn.org/stable/
7 https://github.com/scikit-mobility/scikit-mobility
8 https://rdflib.readthedocs.io/en/stable/
9 https://github.com/YakshHaranwala/PTRAIL
10 https://plotly.com/dash/

https://pandas.pydata.org/
https://geopandas.org/en/stable/
https://scikit-learn.org/stable/
https://github.com/scikit-mobility/scikit-mobility
https://rdflib.readthedocs.io/en/stable/
https://github.com/YakshHaranwala/PTRAIL
https://plotly.com/dash/

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 12

Funded by the
European Union

The user can then proceed to open a web browser and input the provided address: once this is done,

the user interface of the demonstrator will appear.

The backend of the demonstrator is organized in three distinct modules, i.e., pre-processing,

segmentation, and enrichment (Figure 2). These modules must be executed in this order to compute

the final dataset of multiple aspect trajectories. In the following, we illustrate what each of these

modules does, and how the user interface guides the user during the enrichment process.

Figure 2: Demonstrator backend.

2.2.1. Pre-processing module

The first tab allows the user to access the functionalities offered by the pre-processing module (blue

block in Figure 2, while Figure 3 shows the related tab shown by the UI). The goal of this module is

to take into input a dataset of raw trajectories and produce a dataset of pre-processed trajectories

that can be subsequently enriched.

The operations conducted by the pre-processing module are the following: (1) filtering out noisy or

unusable data, (2) discarding trajectories that have an insufficient sampling rate, (3) filtering out

outliers in the trajectories by analyzing their spatio-temporal characteristics, and finally (4)

compressing the trajectories.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 13

Funded by the
European Union

 Figure 3: pre-processing module, as shown in the UI.

From Figure 3, left side, we see how the pre-processing tab allows the user to input the raw trajectory

dataset they want to enrich. In Section 5.1.1 we provide the specifications that the file must follow to

be recognized and used by this module.

The tab lets the user customize some of the pre-processing operations, i.e., the user can specify the

minimum number of points a trajectory should have and a km/h threshold between two consecutive

points that the pre-processing module uses to filter out outliers. Once the raw trajectories have been

pre-processed, the user interface presents some statistics gathered during this step (right side of

Figure 3). The demonstrator also outputs a file containing the pre-processed trajectories named

traj_cleaned.parquet. Such a file follows the format specified in Section 5.1.2.

2.2.2. Trajectory segmentation module

Once the raw trajectories are pre-processed, the user interface activates the segmentation module

tab (orange block in Figure 2, while Figure 4 shows the related tab in the UI). The goal of the

segmentation module to take in input a dataset of pre-processed trajectories and partition each one

of them into sub-trajectories (i.e., segments). The segmentation module uses a well-known and

widely used segmentation criterion, i.e., that of the stop and move (Spaccapietra et al. 2008) made

available by the scikit-mobility library, one of the fundamental open-source libraries that our

demonstrator uses.

The final output of the segmentation module consists of a set of segmented trajectories, which can

then be processed by the enrichment module. Such output is saved in two distinct files named

stops.parquet and moves.parquet. These files follow the specification provided in Section 5.1.3.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 14

Funded by the
European Union

Figure 4: Trajectory segmentation module, as shown in the UI.

Going back to the user interface, the segmentation tab lets the user specify the minimum duration

and the spatial radius the demonstrator will use to identify the stop segments (and, indirectly, the

move ones). Once the trajectories have been segmented, the user interface will activate a drop-

down menu (right side of Figure 4) which can be used to summarily examine information concerning

the stops found for each user.

2.2.3. Enrichment module

Once the trajectories are segmented, the user interface activates the enrichment module tab (green

block in Figure 2, while Figure 5 shows the related tab shown by the UI). This module takes as input

the output of the segmentation module and identifies the different segments to enrich, the aspects

to consider, the datasets to be used to enrich the segments with different aspects, and the

enrichment criteria.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 15

Funded by the
European Union

Figure 5: Enrichment module, as shown in the UI.

The first aspect the segment enrichment module adds is the transportation means associated with

each move. To this end, the segment enrichment module leverages a random-forest classifier that

has been pre-built with the scikit-learn library and trained on the GeoLife dataset (Zheng et al 2010).

The classifier recognizes the following transportation means: walk, car, bike, bus, subway, and train.

We report that the code of the demonstrator is general enough to include different transportation

means inference methods, and it will be the object of future works to include more methods and

transportation means.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 16

Funded by the
European Union

The segment enrichment module then goes on to enrich each stop segment with the regularity

aspect, i.e., whether a stop belongs to a systematic11 stop or an occasional one. The module

distinguishes between these two types of stops by leveraging the DBSCAN algorithm (Birant, D. et

al, 2007): essentially, stops that tend to repeatedly gather around specific locations are considered

systematic, while the other ones are considered occasional.

Here, the user must provide two parameter values, i.e., (1) the maximum distance (in meters) within

which two stops are deemed neighbours and (2) the minimum count of neighbouring stops needed

for a stop to being tagged as a core point, thereby forming an initial cluster. Once clusters are found,

the module considers the stops falling within them as systematic, and proceeds to augment each

cluster with an activity, which is established according to a pre-determined set of temporal criteria.

In the current version of the demonstrator, such activities are home (a cluster of stops that tend to

occur during the weekend or outside working hours), work (a cluster of stops that tend to occur during

the working days and in working hours), or other. Again, the demonstrator is general enough to be

extended to different activities and this is indeed the object for future work.

Next, the enrichment module can associate POIs to stops. This is reflected in the user interface since

the user can retrieve a dataset of POIs either from OpenStreetMap12 – in this case, the user must

specify (1) the name of the city where the trajectories are located and (2) the POI types the user

wants to use to enrich the trajectories – or from a file containing the POI dataset to be used. In

Section 5.1.4 we provide the specifications that such file must follow to be recognized and used by

the demonstrator.

Once a POI dataset is provided, the enrichment module decides which POIs should be used to enrich

the stops by ranking them according to distance and temporal overlap criteria.

The module can also enrich trajectories with the weather information aspect, and the moving objects

generating the trajectories with the social media aspect. In this case, the user must provide the paths

to the files containing the respective datasets. In Sections 5.1.5 and 5.1.6 we provide the

specifications that said files must follow to be recognized and used by the module.

Finally, the enrichment module allows the user to save the output of the whole enrichment process

in an RDF graph. The content within the graph follows the schema defined by CNR’s customized

version of the STEP ontology (Nogueira et al. 2018) and it is saved to disk following the Turtle format.

Note that, by using this format, the graph can be easily imported into popular triple stores (e.g.,

GraphDB) for further analysis and query processing. Section 5.1.7 provides the details on the

customizations we did to the original STEP ontology for this demonstrator, while Section 2.4 provides

an example of the content that can be found inside an RDF knowledge graph generated by the

enrichment module.

11 A systematic stop represents a set of stops that fall within the same area more than a given number of
times. A few examples of systematic stops can be a person’s home, work, gym, and so on.
12 OpenStreetMap: https://www.openstreetmap.org/

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 17

Funded by the
European Union

2.3. How to use the webAPI

The semantic enrichment processor webAPI has been developed with FastAPI13, a modern, fast,

open-source web framework for building APIs with Python 3.6+ based on standard Python type hints.

To use the processor’s webAPI, one must first execute the webAPI server via the python script

mat_builder_api.py: once running, the server will accept HTTP POST and GET requests from

users. The server exposes three different endpoints, providing functionalities of the preprocessing,

segmentation, and enrichment modules shown in Section 2.2. If baseaddress is the server’s base

address, then the endpoints are reachable at:

• Preprocessing endpoint => baseaddress/Preprocessing

• Segmentation endpoint => baseaddress/Segmentation

• Enrichment endpoint => baseaddress/Enrichment

The server listens for HTTP POST and GET requests sent by users to these endpoints. POST

requests enable users to initiate preprocessing, segmentation, enrichment tasks, while GET

requests permit users to actively monitor the tasks execution status and retrieve the tasks results

once they are available. The documentation concerning the use of the endpoints can be accessed

at baseaddress/docs.

Finally, the Python script examples_api_request.py provides a complete and extensively

commented example that shows how to make requests to the demonstrator webAPI to enrich a

dataset of raw trajectories. In the following we give an overview on how to use the endpoints via

HTTP POST and GET requests.

Preprocessing endpoint. As in the case of the preprocessing module exposed by the interactive

user interface, the preprocessing endpoint exposes the module’s functionalities needed to

preprocess a dataset of raw trajectories.

The user can initiate a preprocessing task by sending an HTTP POST request. In this request, the

user must send:

• the raw trajectory dataset, file_trajectories, which must be appropriately formatted (as

specified in Section 5.1.1) and stored in a Parquet file;

• the query parameter min_num_samples, which represents the minimum number of samples

a trajectory must have;

• the query parameter max_speed, which represents the maximum speed allowed in any

trajectory (in km/h);

13 https://fastapi.tiangolo.com/

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 18

Funded by the
European Union

• the query parameter compress_trajectories, which is a Boolean value indicating whether the

trajectories should be compressed or not.

The server can reply to such a request in two different ways:

• If the request can be processed, the server will send a reply with the HTTP code 200 and a

JSON body containing two parameters, i.e., the message parameter containing a message

from the server and the task_id parameter. The task_id parameter contains the unique

identifier the user must use to monitor their preprocessing task execution and, when the task

has ended, retrieve the results.

• If the request cannot be processed, for example in the case the user sent a misformatted

request, the server will reply with the HTTP code 422.

The user can then monitor the status of their preprocessing task via HTTP GET requests. In these

requests, the user must provide in input the task_id query parameter, which should contain the task

identifier previously sent by the server in response to their (successful) POST request. The server

can reply in three different ways:

• If the preprocessing task has terminated, the server will answer with a reply with HTTP code

200, and a parquet file containing the preprocessed trajectory dataset, as per the

specifications outlined in Section 5.1.2.

• If the request cannot be processed, for example in the case the user sent a misformatted

request, the server will reply with the HTTP code 422.

• If some internal error occurred during the preprocessing task, the server will answer with a

reply with HTTP code 500.

Segmentation endpoint. As in the case of the segmentation module exposed by the interactive

user interface, the segmentation endpoint exposes the module’s functionalities needed to segment

a dataset of trajectories.

The user can initiate a segmentation task by sending an HTTP POST request. In this request, the

user must send:

• the trajectory dataset, file_trajectories, which can be preprocessed or not, must be

appropriately formatted (as specified in Section 5.1.2), and must be stored in a Parquet file;

• the query parameter min_duration_stop, which provides the minimum duration a stop must

have (in minutes);

• the query parameter max_stop_radius, which provides the maximum radius a stop can have

(in km).

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 19

Funded by the
European Union

The server can reply to such a request in two different ways:

• If the request can be processed, the server will send a reply with the HTTP code 200 and a

JSON body containing two parameters, i.e., the message parameter containing a message

from the server and the task_id parameter. The task_id parameter contains the unique

identifier the user must use to monitor their segmentation task execution and, when the task

has ended, retrieve the results.

• If the request cannot be processed, for example in the case the user sent a malformed

request, the server will reply with the HTTP code 422.

The user can then monitor the status of their segmentation task via HTTP GET requests. In these

requests, the user must provide in input the task_id parameter previously sent by the server in

response to their (successful) POST request. The server can reply in three different ways:

• If the segmentation task has terminated, the server will answer with a reply with HTTP code

200, and a JSON body containing the set of stop and move segments detected for the

trajectory dataset. The JSON body consists of a dictionary containing two dictionaries: one

containing the set of stop segments, and the other containing the set of move segments.

Both dictionaries are internally structured according to the specifications provided in Section

5.1.3.

• If the request cannot be processed, for example in the case the user sent a misformatted

request, the server will reply with the HTTP code 422.

• If some internal error occurred during the segmentation task, the server will answer with a

reply with HTTP code 500.

Enrichment endpoint. As in the case of the enrichment module exposed by the interactive user

interface, the enrichment endpoint exposes the modules’ functionalities needed to enrich a dataset

of segmented trajectories. The user can initiate an enrichment task by sending an HTTP POST

request. In this request, the user must send:

• The trajectory dataset, file_trajectories, which must be appropriately formatted (as specified

in Section 5.1.2) and stored in a Parquet file;

• The move segment dataset, file_moves, generated by the segmentation module;

• The stop segment datasets, file_stops, generated by the segmentation module;

• The POI dataset, file_poi, containing the POIs to possibly associate with the stop segments.

Note that the dataset must be structured according to the specifications provided in Section

5.1.4, and must be stored in a Parquet file;

• The social media post dataset, file_social, containing the social media post that can be used

to possibly enrich the moving objects that generated the trajectories. Note that the dataset

must be structured according to the specifications provided in Section 5.1.6, and must be

stored in a Parquet file;

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 20

Funded by the
European Union

• The weather conditions dataset, file_weather, containing weather data that can be used to

enrich the trajectories. Note that the dataset must be structured according to the

specifications provided in Section 5.1.5, and must be stored in a Parquet file;

• The query parameter move_enrichment, representing a Boolean value indicating whether the

move segments should be enriched or not with the estimated transportation means;

• The query parameter max_dist, representing the maximum distance beyond which a POI

won’t be associated with a stop segment;

• The query parameter epsilon_distance, which is used by the DBSCAN algorithm to cluster

stop segments (and thus find systematic stops). It represents the distance (in meters) below

which a stop can be included in an existing cluster;

• The query parameter systematic_threshold, which represents the minimum size a cluster of

stops must have to be considered a cluster of systematic stops.

The server can reply to such a request in two different ways:

• If the request can be processed, the server will send a reply with the HTTP code 200 and a

JSON body containing two parameters, i.e., the message parameter containing a message

from the server and the task_id parameter. The task_id parameter contains the unique

identifier the user must use to monitor their enrichment task execution and, when the task

has ended, retrieve the results.

• If the request cannot be processed, for example in the case the user sent a misformatted

request, the server will reply with the HTTP code 422.

The user can then monitor the status of their enrichment task via HTTP GET requests. In these

requests, the user must provide in input the task_id parameter previously sent by the server in

response to their (successful) POST request. The server can reply in three different ways:

• If the enrichment task has terminated, the server will answer with a reply with HTTP code

200, and a parquet file containing the RDF knowledge graph, stored in a Turtle-formatted

file, containing the dataset of semantically enriched trajectories. An example of content

within an RDF graph is provided in Section 2.4, while Section 5.1.7 provides the details on

the STEPv2 ontology used to structure the information within the graphs.

• If the request cannot be processed, for example in the case the user sent a misformatted

request, the server will reply with the HTTP code 422.

• If some internal error occurred during the enrichment task, the server will answer with a reply

with HTTP code 500.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 21

Funded by the
European Union

2.4. Example of content within an RDF graph

Let us conclude by providing a visual example of what can be found in an RDF graph generated by

the demonstrator, either via the interactive user interface or the webAPI. To this end, we use

GraphDB, a very well-known and established triple store. We first import into the store an RDF graph

that has been generated from trajectories and data covering Rome and then use GraphDB’s visual

inspection functionality to navigate the graph.

Figure 6: initial view of the subgraph associated with the user ID 402

In Figure 6 we see a (collapsed) subgraph within the RDF graph related to the user having ID 402.

From the figure, we see that the user has associated a social media aspect (the cyan “feature_social”

node) and a trajectory with ID 24641 (the yellow node). Let us expand the social media aspect node

first.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 22

Funded by the
European Union

Figure 7: Social Media Post aspect.

From Figure 7 we see that the user is associated with two distinct episodes of the social media post

aspect – in other words, the demonstrator found from the information that has been provided that

the user has published two different tweets. If we then look at the content of one of their tweets (this

is done by clicking on one of the “desc” nodes) we can see the text they have posted in one of their

tweets. Note that every episode node is also in a relationship with a node of type “TemporalExtent”

(the violet nodes in the Figure), each representing the time instant at which the post has been

published.

Let us now focus on the trajectories that user 402 possesses. From Figure 6 we see that the user is

associated with a single trajectory with ID 24641. Let us then focus on such a trajectory by expanding

the subgraph rooted in that node. From Figure 8 we see that the trajectory node is in relationship

with several nodes. First, observe that the trajectory is always in relationship with a “RawTrajectory”

node, which in turn is in relationship with a set of nodes (i.e., the fixes) representing the samples

(i.e., pairs (position, time)) making up the trajectory.

The trajectory has also been associated by the demonstrator with two different semantic aspects,

i.e., the moves and the occasional stops. For what concerns the move aspect, we observe that the

demonstrator has detected 10 different move episodes, each having a specific spatiotemporal extent

and a semantic descriptor providing information on the transportation means that have been used

during the move. For what concerns the occasional stops we observe that the demonstrator has

detected 9 different episodes, with each episode having again a specific spatiotemporal extent and

a semantic descriptor providing information on potential points of interest that the user may have

visited during the stop.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 23

Funded by the
European Union

Figure 8: The subgraph rooted in the node related to the trajectory 224641 of the user 402.

2.5. How to tackle the Paris Challenge with the aid of the
semantic enrichment processor

The MOBIDATALAB Hackathon, which was held in Paris, France, between the 15th and 16th

September 2023, introduced a challenge proposed by the city of Paris’ municipality. The challenge

originates from relevant issues concerning the city’s walkability that the municipality intends to

address.

More specifically, the challenge focuses “[...] around the creation of a tool that facilitates the

improvement of the walking environment in Paris, utilizing data-driven strategies without the need

for on-site visits. With limited walking data available, participants are expected to employ data

enrichment methods to model pedestrian behavior. The tool should then leverage this enriched data

to analyze and enhance the walking experience by identifying and addressing issues such as

identifying pedestrianization opportunities, sidewalk extensions, and potential conflicts with other

users.”

Moreover, we report that in the scope of this challenge the MOBIDATALAB project was able to

provide access to a dataset of anonymized raw GPS trajectories generated by individuals moving in

the city of Paris; of particular interest is that part of these trajectories have been generated by

individuals who were walking by foot, using public transportation, or both, thus potentially providing

insights on the pedestrians’ movement behaviours and possibly enabling to reason on how the

walkability of the city can be improved.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 24

Funded by the
European Union

Recall that the semantic enrichment processor has been designed to semantically enrich raw GPS

trajectories: as such, we argue that the processor can be used to facilitate the implementation of the

tool required to solve part of the issues characterizing the challenge.

First, observe that the semantic enrichment process can detect stops, i.e., when objects remain

stationary at some location for some time, and moves, i.e., when objects are moving between stops.

Moreover, recall that the semantic enrichment processor can augment stops with the POIs located

close to the stops’ centroids, and it can augment moves with the transportation means that have

been likely used. Finally, recall that the semantic enrichment processor can enrich trajectories with

weather conditions (i.e., the weather aspect), and trajectory users with the social media post they

have published (i.e., the social media aspect).

With such information at hand, one can then develop a tool that analyzes where stops occur to try

to identify destinations or points of interest that are popular among pedestrians. Knowing the POIs

around which stops are frequently made can help identify key areas where pedestrians prefer to

spend time. This can inform decisions about where to expand pedestrian zones or improve

amenities. Moreover, by examining the duration and location of stops, one can help pinpoint areas

where pedestrians experience delays or obstacles, which could indicate the need for sidewalk

extensions or improved pedestrian facilities. Conversely, understanding the moves can reveal the

most popular walking routes and connections between different areas of the city. This information is

vital in crafting a walking strategy as it tells the city where to focus efforts on improving walkability,

e.g., where to focus on improving walkways or creating new pedestrian paths.

Incorporating weather data can enrich pedestrian behaviour models by highlighting how weather

affects walking habits. For instance, one might find that certain routes are less travelled during poor

weather, indicating a need for weather-protected walking paths or improved drainage to reduce

puddling on sidewalks. Furthermore, knowing how weather impacts pedestrian flow can assist in

planning for seasonal changes or in the design of spaces that can adapt to different weather

conditions, thereby improving the overall walking experience in the city.

Social media information can provide real-time data on pedestrian opinions and experiences. By

analyzing geotagged posts, one can gauge public sentiment about certain walking areas and identify

spots that are either problematic or well-liked. Moreover, social media data can also offer insights

into cultural events or spontaneous gatherings that affect pedestrian traffic. This helps in aligning

urban planning objectives with the ways people naturally use and enjoy the city's spaces.

Overall, integrating all the various semantic dimensions – stops augmented with POIs, moves,

weather conditions, and social media posts – one can provide a holistic view of pedestrian behaviour.

This analysis can help identify the most impactful improvements, such as better lighting around

popular POIs or more benches where there are frequent stops. Moreover, the enriched data might

be used to simulate changes to the walking environment and predict how these changes might affect

pedestrian behaviour. For example, one might forecast the impact of a new pedestrian zone on foot

traffic patterns and POI visits.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 25

Funded by the
European Union

 Geographical enrichment of mobility data (v2
demonstrator)

3.1. How to build the geographical enrichment demonstrator

MDL-Geo-Enrichment is a web application providing many enrichment APIs, it was created using

Spring Boot framework and some other Java and JavaScript libraries.

Figure 9: The Mobility data enrichment architecture

There are 3 ways to get the application built and deployed:

- Manual build

- Build and deploy through Docker

- Build and deploy through Travis

3.1.1. Manual build and dependencies installation

✓ Prerequisites:

OpenJDK 11:

You can get OpenJDK from https://adoptopenjdk.net/

Maven:

You can get Maven using the following guide https://maven.apache.org/install.html

https://adoptopenjdk.net/
https://maven.apache.org/install.html

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 26

Funded by the
European Union

Node.js:

You can get Node.js from https://nodejs.org/en/download/

OsmToGeoJson module:

After installing NodeJS, you can install OsmToGeoJson as a global module with the following
command:

$ npm install -g osmtogeojson

GtfsToGeoJson module:

You need to install also Gtfs-to-GeoJson as a global module with the following command:

$ npm install -g gtfs-to-geojson

✓ Download source code:

You can download the repository as an archive file using the download menu on:
https://github.com/MobiDataLab/mdl-geo-enrichment

Or you can use Git (if installed) to clone the repository:
$ git clone https://github.com/MobiDataLab/mdl-geo-enrichment.git

✓ Build and package application:

You can build and package the application using maven:

$ mvn package -DskipTests

Then you can run the application with the built-in web server:

Using maven:

$ mvn spring-boot:run

Or by running the standalone java archive file:

$ java -jar target/mdl-geo-enrichment-0.0.1-SNAPSHOT.jar

You can specify the profile you want by adding the parameter to the above commands:

-Dspring.profiles.active=prod

There are 3 profiles: dev, integration-test, and prod.

You can customize them on the “resources/ application.yml” file.

https://nodejs.org/en/download/
https://github.com/MobiDataLab/mdl-geo-enrichment
https://github.com/MobiDataLab/mdl-geo-enrichment.git

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 27

Funded by the
European Union

3.1.2. Build and run as a docker image through Gitlab-CI

You can build a docker image bundled with all the application dependencies out of the box, this is
done through Gitlab-CI:

✓ Prerequisites:

Gitlab Runner having Docker installed and running

You can follow the instructions on Gitlab’s project: Settings / CI-CD è Runners

Gitlab-CI and docker configuration are available on the files: “.gitlab-ci.yml” and “Dockerfile”.

Before creating a docker image, you need to:

- Set docker’s registry account credentials on Gitlab CI/CD variables settings:
CI_REGISTRY_USER and CI_REGISTRY_PASSWORD

- Put your Gitlab runner name on the “tags” attribute of “.gitlab-ci.yml”

To build an image based on a tag or the main branch, you can execute “Run pipeline” on the side
menu “Pipelines” and choose the branch or tag you want to build the image upon.

Figure 10: MDL-Geo-Enrichment pipeline on Gitlab-CI

4 stages are executed:

- Build: it compiles the application

- Test: it runs integration tests, an artifact containing the binaries and test reports is saved
and can be downloaded for further analysis when the non-regression tests fail.

- Package: it builds the package of the application to be deployed

- Deploy: it creates a minimal docker image based Alpine with the required dependencies
(OpenJDK11-JRE, Nodejs, Osm2GeoJson module) and uploads it to the docker registry.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 28

Funded by the
European Union

3.1.3. Build and run as a docker image through Travis-CI

You can use Github with Travis-CI to build a docker image the same way it’s done with Gitlab-CI:

✓ Prerequisites:

Github + Travis CI account

You can log in to Travis-CI with your Github account and grant the repository access to Travis so it
can automatically trigger build jobs and fetch the source code, otherwise, you will need to use Travis-
ci Api to manage job scheduling.

Travis configuration is available on the file: “.travis.yml” and Docker configuration remains on the
same file as for Gitlab-CI: “Dockerfile”.

Before creating a docker image, you need to set the official or corporate docker hub registry account
credentials on Travis-CI settings/environments variables: CI_REGISTRY_USER and
CI_REGISTRY_PASSWORD and make it visible only for the main branch

Figure 11: Travis-CI’s environment variables

To build an image based on a tag or the main branch, you can click on “Trigger build” on the side
menu “More options” and choose the branch or tag you want to build upon.

Figure 12: MDL-Geo-Enrichment pipeline on Travis CI

https://developer.travis-ci.com/
https://developer.travis-ci.com/

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 29

Funded by the
European Union

4 stages are executed:

- Build: it compiles the application

- Test: it runs integration tests, an artifact containing the binaries and test reports is saved and can
be downloaded for further analysis when the non-regression tests fail.

- Package: it builds the package of the application to be deployed

- Deploy: it creates a minimal docker image based Alpine with the required dependencies
(OpenJDK11-JRE, Nodejs, Osm2GeoJson module) and uploads it to the docker registry.

3.1.4. Pull and run MDL-Geo-Enrichment docker image

You must have docker installed and running, if you don’t have it installed, you can follow this guide
to install docker.

Then you can get the docker image by running the following command as an admin/root user:

$ docker login DOCKER_REGISTRY -u USER_NAME --password-stdin

$ docker pull DOCKER_REGISTRY/PROJECT/mdl-geo-enrichment:TAG

$ docker run -d -p 80:80 -p 443:443 registry.gitlab.com/PROJECT/mdl-geo-enrichment:TAG

✓ USER_NAME is the username of your GitLab’s registry credentials, you will be prompted to
enter your credentials password.

✓ PROJECT is the project name where the mdl-geo-enrichment repository is hosted

✓ TAG is the tag version or by default “latest”

✓ DOCKER_REGISTRY (ex: registry.gitlab.com) is the docker registry used to upload docker
images (keep it empty if the image you are pulling is hosted on the official docker hub)

The later command exposes both HTTP and HTTPS ports on the docker container, a self-signed

certificate is included for the TLS layer, but you may still need to manually accept the certificate on

your browser since it is not signed by a known authority.

Once the server is up, you can browse Swagger UI through http://SERVER/swagger-ui/

https://docs.docker.com/get-docker/
http://server/swagger-ui/

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 30

Funded by the
European Union

Figure 13: Swagger UI – MDL-Geo-Enrichment API list

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 31

Funded by the
European Union

3.2. How to use the geographical enrichment demonstrator

The mobility data mashup API is a Rest API that consumes a target API and enriches it with
additional attributes extracted from a source API and produces the same format as the target API.

Here is a sequence diagram illustrating the enrichment process:

Figure 14: Sequence diagram of the enrichment process

The geographical enrichment demonstrator provides 6 examples of API enrichment, we use Navitia
and Here’s APIs as a target APIs to be enriched, unfortunately, those providers and many others
use their proprietary format.

So, as an example of proprietary data format, we use Navitia and Here API as target REST APIs to
be enriched, and we enrich them with any provider supporting one of the 3 following standards
formats:

- OSM: OpenStreetMap, Overpass output format
- GeoJson: Geospatial data interchange format
- GTFS: General transit feed specification format

https://overpass-api.de/output_formats.html#json
https://datatracker.ietf.org/doc/html/rfc7946
https://gtfs.org/

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 32

Funded by the
European Union

Figure 15: Sequence diagram of the enrichment process

The correlation of the nodes (stop point) is done using the open-source GIS toolkit GeoTools, based
on the coordinates and the name of the nodes.

Here is the list of the implemented APIs.

3.2.1. Here API enrichment:

We implemented 2 endpoints to demonstrate enrichment of Here stations and routes services:

- /api/v1/here/getNearStations

- /api/v1/here/getRoutes

The 3 open standard data types OSM, GeoJson, and GTFS are used to enrich the stop points with
additional information such as accessibility, weather, air quality, etc.

Here is an example of how to the API through Swagger UI:

https://www.geotools.org/

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 33

Funded by the
European Union

Figure 16: Here stations API enrichment

Following are the input parameters required by this API:

Table 1: Here API parameters

Parameter Mandatory Meaning

apiFormat true Provider data format: GTFS, OSM, GeoJSON

apiKey false Authorization key for Here API

apiUrl true API URL of the source API

coordinates true Coordinates of the location: latitude, longitude

enrichAttributes false List of the attributes name to be enriched (separated with commas)

sourceToken true Header’s authorization token for the source API that will be used for
enrichment, to be filled only if a token is required for the source API

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 34

Funded by the
European Union

The API can be also used with a curl request, here is an example of this request on a local installation
of the demonstrator:

curl -X GET
"https://localhost/api/v1/here/getNearStations?apiFormat=GeoJson&apiKey=0PMpb1W_5iihYGu7UrBWsR8f
I6Utopf52hFBKOwl7Xc&apiUrl=https%3A%2F%2Foverpass.kumi.systems%2Fapi%2Finterpreter%3Fdata%
3D%5Bout%3Ajson%5D%3Bnode%5Bhighway%5D(48.856892%2C%202.332623%2C48.896892%2C%20
2.372623)%3Bnode%5Brailway%5D(48.856892%2C%202.332623%2C48.896892%2C%202.372623)%3Bo
ut%2520meta%3B&coordinates=48.876892%2C2.352623&enrichAttributes=wheelchair%2C%20shelter%2C
%20tactile_paving%2C%20bench%2C%20bin%2C%20lit" -H "accept: application/json"

3.2.2. Navitia API enrichment:

We implemented 2 endpoints to enrich Navitia journeys and lines API:

- /api/v1/navitia/getJourneys

- /api/v1/navitia/getLines

You use both APIs to enrich Navitia’s journey or lines API with an OpenStreetMap API or any other
data provider API supporting one of the 3 standards data formats OSM, GeoJson, or GTFS.

Both endpoints use the same parameter list as previously listed for Here API enrichment.

3.2.3. OSM API enrichment:

We implemented 3 endpoints to handle this mobility data format:

- /api/v1/osm/convertOsmApiToGeoJson

This API is used as a proxy to call and convert the output of an OpenStreetMap data format API to
GeoJson format

- /api/v1/osm/convertOsmDataToGeoJson

This API takes OSM data as a parameter and converts it to GeoJson format

- /api/v1/osm/enrichOsmApi

This API can be used to enrich any target OSM format API with a source mobility data API that
supports one of the 3 standards of data format OSM, GeoJson, or GTFS.

3.2.4. GTFS API enrichment:

We implemented 3 endpoints to handle this mobility data format:

- /api/v1/gtfs/convertGtfsApiToGeoJson

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 35

Funded by the
European Union

This API is used as a proxy to call and convert the output of a GTFS data format API to GeoJson
format

- /api/v1/gtfs/convertGtfsDataToGeoJson

This API takes GTFS data as a parameter and converts it to GeoJson format

- /api/v1/gtfs/enrichGtfsApi

This API can be used to enrich any target GTFS format API with a source mobility data API that
supports one of the 3 standards data formats OSM, GeoJson, and GTFS.

3.2.5. GeoJson API enrichment:

We implemented 3 endpoints to handle this mobility data format:

- /api/v1/geojson/enrichGeoJsonApi

This API can be used to enrich any target mobility data API that produces GeoJson format, with a
source mobility data API that supports one of the 3 standards data formats OSM, GeoJson, or
GTFS.

Figure 17: GeoJSON Api enrichment

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 36

Funded by the
European Union

Following is the input parameter list required by this API:

Table 2: GeoJson API parameters

Parameter Mandatory Meaning

apiFormat true The provider data format of the source API to be used for
enrichment: GTFS, OSM, GeoJSON

enrichAttributes false List of the attributes name to be enriched (separated with commas)

sourceApiUrl true API URL of the source API

sourceToken false Header’s authorization token for the source API

targetApiUrl true API URL of the target API to be enriched

targetToken false Header’s authorization token for the target API

The API can be also used with a curl request, here is an example of this request on local a installation
of the demonstrator:

curl -X GET
"https://localhost/api/v1/geojson/enrichGeoJsonApi?apiFormat=GTFS&enrichAttributes=wheelchair%2C%20
shelter%2C%20tactile_paving%2C%20bench%2C%20bin%2C%20lit&sourceApiUrl=https%3A%2F%2Fover
pass.kumi.systems%2Fapi%2Finterpreter%3Fdata%3D%5Bout%3Ajson%5D%3Bnode%5Bhighway%3Dbus
_stop%5D(48.8345631%2C2.2433581%2C48.8775033%2C2.4400646)%3Bout%2520meta%3B&targetApiU
rl=https%3A%2F%2Foverpass.kumi.systems%2Fapi%2Finterpreter%3Fdata%3D%5Bout%3Ajson%5D%3B
node%5Bhighway%3Dbus_stop%5D(48.8345631%2C2.2433581%2C48.8775033%2C2.4400646)%3Bout%
2520meta%3B" -H "accept: application/json"

3.2.6. Generic Json API enrichment:

The main goal of this demonstrator is to make it easy to collect and consolidate mobility data from
different sources, unfortunately, this is not an easy task, because of the heterogeneity of the
providers’ services, the providers expose their data in different formats, some of them are open
standards such GTFS, GeoJson and OpenStreetMap, others are proprietary formats like Navitia’s
format (NTFS) and Here’s format.

With this generic API, we try to improve the interoperability of those services using the only common
part of their APIs output, JSON format.

The main goal of this API will be to enrich any Rest mobility data API with any other data format of
another Rest API, using JSONPath expression, here is the user manual of how to use JSONPath
expressions: https://goessner.net/articles/JsonPath/index.html#e2

The geographical enrichment demonstrator implements one generic API:

- /api/v1/json/enrichJsonApi

https://goessner.net/articles/JsonPath/index.html#e2

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 37

Funded by the
European Union

This API can be used to enrich any target mobility data API that produces JSON format, with any
other source of mobility data that produces JSON format.

Authentication to the source and target APIs supports 2 ways:

- The header tokens

- The API key through request parameters, you can put it on the API’s Url

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 38

Funded by the
European Union

Figure 18: Generic JSON Api enrichment

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 39

Funded by the
European Union

Following are the inputs parameters of this API:

Table 3: Generic Json API parameters

Parameter Mandatory Meaning

enrichAttributes true List of the attributes name to be enriched (separated with
commas)

sourceApiUrl true API URL of the source API

sourceAttributesParentPath true The path of the parent node of the attributes on the source
API response (using JSONPath)

sourceCoordsPath true The path of the “coordinates” attribute on the source API
response (using JSONPath)

sourceNamePath true The path of the “name” attribute on the source API
response (using JSONPath)

sourceToken false Header’s authorization token for the source API

targetApiUrl true API URL of the target API to be enriched

targetAttributesParentPath true The path of the parent node of the attributes on the source
API response (using JSONPath)

targetCoordsPath true The path of the coordinates attribute on the target API
response (using JSONPath)

targetNamePath true The path of the “name” attribute on the target API response
(using JSONPath)

targetToken false Header’s authorizations token the target API

The API can be also used with a curl request, here is an example of this request on a local installation
of the demonstrator:

curl -X GET
"https://localhost/api/v1/json/enrichJsonApi?enrichAttributes=wheelchair%2C%20shelter%2C%20tactile_p
aving%2C%20bench%2C%20bin%2C%20lit&sourceApiUrl=https%3A%2F%2Foverpass.kumi.systems%2
Fapi%2Finterpreter%3Fdata%3D%5Bout%3Ajson%5D%3Bnode%5Bhighway%3Dbus_stop%5D(48.8345
631%2C2.2433581%2C48.8775033%2C2.4400646)%3Bout%2520meta%3B&sourceAttributesParentPath
=%24..elements.tags&sourceNamePath=%24..elements.coords&targetApiUrl=https%3A%2F%2Foverpass
.kumi.systems%2Fapi%2Finterpreter%3Fdata%3D%5Bout%3Ajson%5D%3Bnode%5Bhighway%3Dbus_s
top%5D(48.8345631%2C2.2433581%2C48.8775033%2C2.4400646)%3Bout%2520meta%3B&targetAttrib
utesParentPath=%24..stop_point.equipments&targetNamePath=%24..stop_point.coordinates" -H "accept:
application/json"

3.2.7. Enrich Open Street Map lines:

This is a new feature introduced on the version 2 of the geographical enrichment demonstrator to let
us enrich a line between 2 stop points with additional data such as accessibility and air quality index
or any other useful information…

https://goessner.net/articles/JsonPath/index.html#e2
https://goessner.net/articles/JsonPath/index.html#e2
https://goessner.net/articles/JsonPath/index.html#e2
https://goessner.net/articles/JsonPath/index.html#e2
https://goessner.net/articles/JsonPath/index.html#e2
https://goessner.net/articles/JsonPath/index.html#e2

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 40

Funded by the
European Union

Figure 19: OSM lines enrichment

This API takes as input an OSM data that describes for example a Bus line stops, and it uses another
API to get useful information and put it inside the according lines based on the coordinates and stop
points names.

Technically this is done by parsing the OSM input data, converting it to GeoJson, then we convert
also the enrichment data (OSM/GTFS) to GeoJson data, if it is not already on a GeoJson format,
and after that we correlate the data based on coordinates and names to enrich the line with a new
Json attribute “enriched_properties”.

3.2.8. API demonstration:

A short demonstration video has been made available on the project repository 14, it describes how
to build and use the API with some simple data enrichment use cases.

3.3. Migration of the API documentation

On the version 2 of the enrichment demonstrator, we migrated the Swagger UI framework from

SpringFox to SpringDoc.

14 https://github.com/MobiDataLab/mdl-geo-enrichment/raw/main/demo/T4.7-mdl-geo-enrichment-demo-
audio-26092022.mp4

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 41

Funded by the
European Union

Figure 20: SpringDoc-openapi modules

SpringDoc-OpenAPI15 java library helps to automate the generation of API documentation using

spring boot projects. springdoc-openapi works by examining an application at runtime to infer API

semantics based on spring configurations, class structure and various annotations.

SpringDoc-OpenAPI is relatively a new library that is much easier to integrate with our demonstrator,

this library has also the advantage of being actively maintained and it provides practically the same

Swagger UI as on SpringFox that lakes technical support.

This framework simplifies also adding the demonstrator API to the services catalogue16, because it

exposes the api documentation in an OpenAPI format.

15 https://springdoc.org/
16 https://mobidatalab.github.io/mdl-catalog-ui/

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 42

Funded by the
European Union

Figure 21: Geographical enrichment API documentation

The API documentation through the services catalog is available through 2 formats: YAML and JSON

Many tools are used to export the API documentation through the services catalog:

- Redocly17

- StopLight18

- OpenAPI-GUI19This investigation introduced the Mobility Data Geographical and

Semantic Enrichment demonstrators, which are both open-source solutions that

enrich heterogeneous data providers. The effort we spent developing these

demonstrators allowed us to quantitatively evaluate how much we can enrich

trajectories. The results discussed here may also serve as a basis for further

exploration of new research ideas.

17 https://redocly.github.io/redoc/
18 https://stoplight.io/
19 https://mermade.github.io/openapi-gui/

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 43

Funded by the
European Union

 Conclusions

Enriching mobility data is pivotal in multiple domains, because it allows for a more nuanced

understanding of movement patterns. By adding context like weather conditions, stop and move

segments, various types of points of interest, social media, and more, we gain insights essential for

effective urban and transportation planning. This enriched data not only aids in optimizing traffic flow

and public transport routes but also supports sustainable transport initiatives, crucial in today's

environmentally conscious world. Additionally, it enables personalized travel recommendations,

improving user experiences, and can be instrumental in enhancing safety by identifying high-risk

areas. Furthermore, enriched mobility data has significant economic benefits, reducing costs

associated with congestion and inefficiencies. In research and development, it opens new avenues

for innovation, especially in smart city technologies and autonomous vehicles. Finally, in emergency

situations, such enriched data has the potential to make crisis management and response effective,

underscoring its multifaceted importance.

The need of a semantic enrichment processor, which we detailed in Section 2, emerges from the

widespread adoption of personal location devices, the Internet of Mobile Things, and Location-Based

Social Networks, which collectively facilitate the collection of extensive movement data. This data

often requires enrichment with various semantic dimensions to provide rich, contextual, and diverse

information about the environment, thereby leading to the need of having semantically enriched

trajectories. The processor's backend is structured as a three-step pipeline. It begins with a dataset

of trajectories and a set of enrichment data sources, including linked open data, and ultimately

outputs datasets of semantically enriched trajectories adhering to the open Resource Description

Format (RDF) standard and to a customized version of the STEPv2 ontology. Such a format allows

for the integration of these enriched datasets into a chosen triple store, enabling the extraction of

insightful movement behaviours and patterns through SPARQL and federated SPARQL queries.

The semantic enrichment processor is usable through (1) an interactive user interface (which can be

installed and executed in a machine) has been introduced in the first version of the demonstrator)

and (2) a webAPI server that brings the processor's backend functionalities to remote users. This

latter component effectively positions the semantic enrichment processor as a service within the

transport cloud platform.

Finally, we highlight that the design and development of the semantic enrichment processor are

grounded in the principles of modularity, configurability, and extensibility. This approach allows future

developers the flexibility to potentially create any semantic enrichment pipeline to suit their needs

and application scenarios, and to extend the functionalities provided by the semantic enrichment

processor’s current version.

The geographical enrichment of mobility data stands as a pivotal instrument in understanding and
optimizing various facets of human movement in our increasingly interconnected world. By
integrating geographic information into mobility datasets, we gain valuable insights into spatial
patterns, route preferences, and urban dynamics.

This enrichment not only enhances the accuracy of location-based services but also fuels
advancements in urban planning, transportation management, and environmental sustainability. The
synergy between mobility data and geographical context empowers decision-makers to formulate
informed policies, design efficient transportation systems, and respond effectively to evolving

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 44

Funded by the
European Union

societal needs. As we navigate the complexities and heterogeneity of modern mobility formats
(GTFS, OSM, GeoJSON…), the geographical enrichment of data emerges as an indispensable tool,
fostering a more resilient and responsive framework for addressing the challenges and opportunities
of our dynamic and interconnected societies.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 45

Funded by the
European Union

 Annexes

5.1. Semantic enrichment of mobility data

5.1.1. Specifications of the Pandas dataframe containing the
raw trajectories

The user is requested to input a file containing the raw trajectory dataset to the demonstrator. The

file must contain a Pandas dataframe saved in the Parquet20 format. Each record of the dataframe

represents a sample of some trajectory and must have the following fields:

• traj_id, a string that represents the identifier of the trajectory the sample is associated with.

• user, an integer representing the identifier of the entity (e.g., user, vehicle) with which the

sample is associated with. Note that a user may have multiple trajectories.
• lat, a floating-point value representing the latitude associated with the sample.

• lon, a floating-point value representing the longitude associated with the sample.

• time, a datetime64 value representing the timestamp associated with the sample.

5.1.2. Specifications of the Pandas dataframe containing the
output of the pre-processing module

The output of the pre-processing module consists of a file named traj_cleaned.parquet

containing the dataset of the pre-processed trajectories. The file contains a Pandas dataframe saved
in the Parquet21 format. Each record of the dataframe represents a sample of some trajectory and
has the following fields:

• tid, a string that represents the identifier of the trajectory the sample is associated with.

• uid, an integer representing the identifier of the entity (e.g., user, vehicle) with which the

sample is associated with. Note that a user may have multiple trajectories.
• lat, a floating-point value representing the latitude associated with the sample.

• lng, a floating-point value representing the longitude associated with the sample.

• datetime, a datetime64 value representing the timestamp associated with the sample.

20 For more information on how to save a Pandas dataframe in the Parquet binary format, please refer to
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_parquet.html
21 For more information on how to save a Pandas dataframe in the Parquet binary format, please refer to
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_parquet.html

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_parquet.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_parquet.html

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 46

Funded by the
European Union

5.1.3. Specifications of the Pandas dataframes containing the
output of the segmentation module

The output of the segmentation module consists of two files: stops.parquet and moves.parquet,

which respectively contain the stops and the moves detected for a given set of pre-processed

trajectories. Both files contain a Pandas dataframe saved in the Parquet22 format.

Each record in stops.parquet (or internal dictionary, containing the stop segments, in the JSON

body of a response to a GET request to the segmentation endpoint) represents a stop that has been

detected for some trajectory of some user, and has the following fields:

• tid, a string that represents the identifier of the trajectory the stop is associated with.

• uid, an integer representing the identifier of the entity (e.g., user, vehicle) the stop is

associated with.
• lat, a floating-point value representing the latitude associated with the stop centroid.

• lng, a floating-point value representing the longitude associated with the stop centroid.

• datetime, a datetime64 value representing the timestamp associated with the instant the

stop begins.
• leaving_datetime, a datetime64 value representing the timestamp associated with the

instant the stop ends.

Each record in moves.parquet (or internal dictionary, containing the move segments, in the JSON

body of a response to a GET request to the segmentation endpoint) represents a move that has

been detected for some trajectory of some user, and has the following fields:

• tid, a string that represents the identifier of the trajectory the move is associated with.

• uid, an integer representing the identifier of the entity (e.g., user, vehicle) the move is

associated with.
• lat, a floating-point value representing the latitude associated with the location where the

move begins.
• lng, a floating-point value representing the longitude associated with the location where the

move begins.
• datetime, a datetime64 value representing the timestamp associated with the instant the

move begins.
• move_id, a float value representing the identifier associated with the move.

22 For more information on how to save a Pandas dataframe in the Parquet binary format, please refer to
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_parquet.html

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_parquet.html

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 47

Funded by the
European Union

5.1.4. Specifications of a file containing a dataset of points of
interest.

The user is allowed to input a file containing the POIs to be used to enrich the occasional stops to

the demonstrator. The file must contain a Pandas dataframe saved in the Parquet format. Each

record of the dataframe must have the following fields:

• osmid: a string representing the identifier that OpenStreetMap associates to a specific POI.

• category: a string representing the OpenStreetMap category to which the POI belongs. The

current version of the demonstrator supports the following categories: amenity, aeroway,
building, historic, healthcare, landuse, office, public_transport, shop,
and tourism.

• wikidata: a string representing the identifier that has been assigned by WikiData to the POI

(note: this field can contain a missing value in case a POI is not present in WikiData).
• geometry: Python object describing the shape (e.g., point, polygon, etc.) associated with the

POI.

5.1.5. Specifications of a file containing weather information

The user may pass to the demonstrator a file containing the dataset with weather information to be

used to enrich the trajectories. The file must contain a Pandas dataframe saved in the Parquet

format. Each record of the dataframe must have the following fields:

• DATE: a string representing a date in yyyy-mm-dd format. Such date represents the day

covered by the record.
• TAVG_C: float value representing the average temperature associated with DATE.

• DESCRIPTION: a string representing the weather condition associated with DATE (e.g., sunny,

rainy).

Note that in each record there is no association between the weather information and the location it

refers to. In other words, the demonstrator assumes that the weather information provided within the

weather dataframe covers the geographical area in which the trajectories are known to be located.

5.1.6. Specifications of a file containing social media posts

The user can pass to the demonstrator a file containing the dataset with tweets (i.e., social media

posts) that can be used to enrich the trajectories. The file must contain a Pandas dataframe saved

in the Parquet format. Each record of the dataframe must have the following fields:

• tweet_id: a string representing the identifier of the tweet.

• text: a string representing the content of the tweet.

• tweet_created: a string representing the date on which the tweet was made. The date is in

yyyy-mm-dd format.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 48

Funded by the
European Union

• uid: identifier of the user that made the tweet. Must correspond to the user field in the

specifications of the Pandas dataframe containing the raw trajectories.

5.1.7. Details on the ontology used to structure the information
within the RDF graph

The specifications of the original STEP ontology can be found at http://talespaiva.github.io/step/.

In the following, we introduce the main customizations CNR did to STEP for the demonstrator.

We introduced a class, Point of Interest, representing instances of points of interest. Each instance

of this class possesses (via the hasOSMValue data property) the identifier that OpenStreetMap

associates to its POI, and (if present) the URI (via the hasWDValue data property) to the WikiData

page associated with the POI.

We introduced several subclasses of the class Qualitative Description. We recall that the authors

of the STEP ontology introduced the Qualitative Description class to enable individual episodes23 of

semantic aspects to have complex representations. Moreover, we recall that this class represents a

fundamental building block that must be extended according to one’s specific needs.

Accordingly, the subclasses of Qualitative Description we introduce are:

Move: this class (Figure 22) models instances of qualitative descriptions associated with episodes

of aspects concerning move segments of trajectories. We also extended the Move class with several

subclasses representing different transportation means, i.e., Bike, Bus, Car, Subway, Train, Taxi,

and Walk.

23 By episode of a semantic aspect here we mean a specific occurrence of such aspect in space and/or time.
For instance, an episode of an Occasional Stop occurs during some time interval in some spatial region.
Another example can be an episode of a Move, which occurs during some time interval along the path
associated with the move segment.

http://talespaiva.github.io/step/

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 49

Funded by the
European Union

Figure 22: Overview of the Move class with its subclasses

Stop: this class (Figure 23) models instances of qualitative descriptions associated with episodes of

aspects concerning stop segments of trajectories. We also extended the Stop class with two

subclasses representing the two different types of stops the demonstrator detects during the

enrichment process, i.e., Occasional Stop and Systematic Stop.

Figure 23: Overview of the Stop class with its subclasses.

Each instance of Occasional Stop can be associated with one or more instances of Point of Interest

via the hasPOI property. Each instance of Systematic Stop is associated with a pair of values (via

the hasStartHour and hasEndHour datatype properties) indicating the hours at which the systematic

stop begins and ends.

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 50

Funded by the
European Union

We also provide two further subclasses derived from the subclass Systematic Stop, i.e., Home and

Work, which conceptually represent the two types of systematic stops the demonstrator currently

attempts to recognize.

Weather: this class (Figure 24) models instances of qualitative descriptions associated with

episodes of the weather aspect. Each instance of this class possesses two values, i.e., the average

temperature (via the hasTemperature datatype property) and the weather conditions (via the

hasWeatherCondition datatype property) observed during the episode the instance is associated

with.

Social Media Post: this class (Figure 24) models instances of qualitative descriptions associated

with episodes of the social media post aspect. Each instance of this class possesses two values, the

first one being a string representing the text of a post (via the hasText datatype property), and the

second one being a timestamp indicating the publication time of the post (via the hasPublicationTime

datatype property).

Figure 24: Overview of the Weather and Social Media Post classes.

We let instances of the Agent class (i.e., the users producing the trajectories) have semantic

aspects. This is achieved by modifying the domain of the hasFeature property, which is now the

union of the classes Spatiotemporal Element and Agent.

We provide the OWL files containing the customized version of the STEP ontology in the GitHub

repository associated with the demonstrator: https://github.com/MobiDataLab/mdl-semantic-

enrichment

https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FMobiDataLab%2Fmdl-semantic-enrichment&data=05%7C01%7CMohamed.KARAMI%40akka.eu%7C5b79d6b06b73415f554e08da6efd434c%7Ced0e34146e56454c8a82eb80befb738b%7C1%7C0%7C637944332220715228%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=VKfCCayb7Ms5kbSZRPGv3Eq4ZS36j0IVH5%2FGEeeCn6g%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FMobiDataLab%2Fmdl-semantic-enrichment&data=05%7C01%7CMohamed.KARAMI%40akka.eu%7C5b79d6b06b73415f554e08da6efd434c%7Ced0e34146e56454c8a82eb80befb738b%7C1%7C0%7C637944332220715228%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=VKfCCayb7Ms5kbSZRPGv3Eq4ZS36j0IVH5%2FGEeeCn6g%3D&reserved=0

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 51

Funded by the
European Union

 References

Dos Santos Mello Ronaldo, Bogorny Vania, Alvares Luis Otávio, Zambom Santana Luiz Henrique,
Ferrero Carlos Andres, Frozza Angelo Augusto, Schreiner Geomar Andre, Renso Chiara MASTER:
A multiple aspect views on trajectories. Trans. GIS 23(4): 805-822 (2019).

Nogueira, Tales P., Reinaldo B. Braga, Carina T. de Oliveira, and Hervé Martin. "FrameSTEP: A
framework for annotating semantic trajectories based on episodes." Expert Systems with
Applications 92 (2018): 533-545.

Spaccapietra, Stefano, Christine Parent, Maria Luisa Damiani, Jose Antonio de Macedo, Fabio
Porto, and Christelle Vangenot. "A conceptual view on trajectories." Data & knowledge engineering
65, no. 1 (2008): 126-146.),

Zheng, Yu, Xing Xie, and Wei-Ying Ma. "GeoLife: A collaborative social networking service among
user, location and trajectory." IEEE Data Eng. Bull. 33, no. 2 (2010): 32-39.)).

Birant, D. and Kut, A., 2007. ST-DBSCAN: An algorithm for clustering spatial–temporal data. Data &
knowledge engineering, 60(1), pp.208-221.

https://dblp.org/db/journals/tgis/tgis23.html#MelloBASFFSR19

MOBIDATALAB – H2020 G.A. No. 101006879

D4.8 Data Enrichment Processors V2 52

Funded by the
European Union

 MobiDataLab consortium

The consortium of MobiDataLab consists of 10 partners with multidisciplinary and complementary
competencies. This includes leading universities, networks, and industry sector specialists.

For further information please visit www.mobidatalab.eu

MobiDataLab is co-funded by the EU
under the H2020 Research and
Innovation Programme (grant
agreement No 101006879).

The content of this document reflects solely the views of its authors. The European Commission is not liable for any use

that may be made of the information contained therein. The MobiDataLab consortium members shall have no liability for

damages of any kind that may result from the use of these materials.

@MobiDataLab

#MobiDataLab

https://www.linkedin.com/company/mobidatalab

http://www.mobidatalab.eu/
https://twitter.com/MobiDataLab
https://www.linkedin.com/company/mobidatalab

